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Abstract

We provide a recursive approach for assessing Pareto efficiency in a pure endow-
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uous state space. We use our efficiency characterization to prove that a monetary
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1 Introduction

This paper provides a recursive approach for assessing Pareto efficiency in a pure endow-

ment stochastic OLG model. We then make use of our recursive formulation to derive a

complete characterization of Pareto efficiency for stationary allocations on a continuous

state space. We use our efficiency characterization to prove that a monetary equilibrium

exists if and only if the initial allocation is inefficient.

Our first contribution is to provide a recursive formulation for assessing Pareto ineffi-

ciency in stationary stochastic OLG economies with a general state space. The recursive

formulation is based on a general-state-space extension of Chattopadhyay and Gottardi

(1999)’s necessary condition for inefficiency in a pure exchange model with a discrete

state space. Our suggestion is constructive and potentially computationally feasible. It is

simpler to implement than an approach based directly on Chattopadhyay and Gottardi

(1999)’s characterization. We reinterpret their approach for assessing Pareto efficiency,

which is in the Cass tradition, as a minimax problem. We then apply methods from

monotone dynamic programming along the lines of Bertsekas and Shreve (1978), chapter

5 1. Our approach suggest how to compute an optimal potentially improving transfer

scheme as a stationary solution to a Bellman type of equation. Our method is not limited

to the specific model considered here, but can be applied to any stochastic OLG model

with a stationary structure (e.g. models with capital as an endogenous state variable as

in Demange and Laroque (2000)).

Our second contribution is an application of the recursive formulation of the minimax

problem. We restrict attention to stationary allocations on a general state space and

characterize Pareto efficiency of stationary allocations.2 This task resembles the dominant

eigenvector characterization for models with a discrete state space. Our result provides an

alternative characterization to the one of Manuelli (1990).3 Also, our results extend the

partial classification of efficiency in Demange and Laroque (2000). Bloise and Calciano

(2008) obtain a characterization of robust inefficiency that has a form similar to our

Theorem 2.

Our third contribution is another application of the recursive formulation, where we

1The results from chapter 5 in Bertsekas and Shreve (1978) are however not directly applicable, since
some assumption made there (like Assumption I.2 on p. 71) do not hold in our minimax problem. We
use the specific structure of our minimax problem to prove the results we need.

2Most papers on stochastic OLG models deal with a discrete shock space. Apart from the work cited
subsequently, Zilcha (1990), who examines capital overaccumulation, is one of the few papers that deal
with a continuous shock space.

3As we discuss subsequently and as has already been pointed out in Demange and Laroque (1999,
2000), Manuelli’s characterization is not correctly proved and it is unclear to us whether it holds or not.
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deal with the existence of monetary equilibria and the link between Pareto inefficiency

and the existence of monetary equilibria in our stationary setup. We extend the results

for a continuous state space from Manuelli (1990) and show that in a stationary set up

there is the same close link between optimality of an (initial) allocation and the existence

of (optimal) monetary equilibria, as is the case under certainty [see Benveniste and Cass

(1986), Okuno and Zilcha (1983) and - for a setting with capital - Tirole (1985)] and

under uncertainty with a discrete state space [see Aiyagari and Peled (1991)].4

Although we restrict attention to the relatively simple case of stationary endow-

ment economies, our first and second contribution can be applied to more complicated

economies with capital accumulation, as has been done in Barbie and Hillebrand (2017),

where the topic of the third contribution of this paper is studied in such a framework,

which naturally have a continuous state space. In our view it makes sense to develop the

first two insights first in a relatively simple framework, which displays all essential ele-

ments of more involved set-ups, and then adapt them to these situations. So we view the

first two contributions as the central methodological progress, and the third contribution

as a first application of them.

The paper is organized as follows. Section 2 describes the pure endowment economy. In

Section 3, a necessary condition for interim Pareto efficiency in a competitive equilibrium

with continuous state space is derived. Section 4 provides a recursive approach to assess

Pareto efficiency for stationary allocations. Section 5 presents a complete characterization

of inefficiency in the stationary framework. Section 6 deals with the existence of monetary

equilibria. Proofs are given in the appendix.

2 The Model

Uncertainty Time is discrete with t = 0, 1, .... Uncertainty is described by a state space

S, where S is a compact metric space5. We denote by S the Borel σ−algebra on S.

The stochastic evolution of the state s ∈ S over time is described by a stochastic kernel

P (s, ds′) from S to S with full support for each s ∈ S. Further, we assume that for all

s, s′ ∈ S and A ∈ S we have P (s, A) > 0 if and only if P (s′, A) > 0. Also, for fixed

A ∈ S, the mapping P (s, A) from S to the real numbers is S−measurable. Let st denote

4Other related work includes Balasko and Shell (1981) and Okuno and Zilcha (1980) who deal with
optimal monetary equilibra in a deterministic non-stationary framework as well as Gottardi (1996) who
examined the existence of monetary equilibria in a stationary stochastic OLG model with incomplete
markets.

5As any finite set is a compact metric space under the topology generated by the discrete metric, the
finite state space case is trivially included.
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the time t history st = (s0, s1, ..., st), si ∈ S. For each history st, we denote by sti for

i = 0, 1, ..., t the i-th coordinate of st.

Define S∞ :=
∏∞

t=0 St and denote by S∞ the product Borel σ−algebra on S∞, where

St = S for each t = 0, 1.... For each s∞ ∈ S∞, we denote by s∞i the i-th coordinate of

s∞ for i = 0, 1, .... Let St :=
∏t

i=0 St and denote by St the Borel σ−algebra on St. By

the Kolmogorov extension theorem6, the transition probabilities P (s, .) together with an

initial probability measure µ on (S,S) generate a unique consistent probability measure

P∞ on (S∞,S∞) . We fix some arbitrary µ throughout the paper.

Aggregate Endowment The aggregate endowment in each history is described by

a function ω (s) such that ω is S−measurable, strictly positive and bounded, i.e. for some

finite K we have K > ω (s) > 0 for all s ∈ S.7

Consumers Each period t, a new consumer is born who lives for two periods. We

assume that the consumers born in period t are distinguished by the history up to time

t. Thus each consumer faces risk in his second period of life (old age), but not in his first

period (young age). There is one consumption good in each history st. Each consumer

has consumption for his young age and old age, depending on the state of nature. There

is one initially old consumer in period 0.

Allocations A general (non-stationary) allocation is defined by a family of functions

{(cyt (s∞) , cot (s∞))}∞t=0 such that young age consumption cyt and old age consumption cot

are St−measurable8 for each t and cyt (s∞) + cot (s∞) = ω (st) for each s∞ ∈ S∞ and each

t. An allocation is called interior if there exists a k > 0 such that cyt (s∞) > k and

cot (s∞) > k for each s∞ ∈ S∞ and each t.

We mainly focus on stationary consumption allocations. For any given s we denote

by cy (s) the stationary allocation of young age consumption and by co (s) the stationary

allocation of old age consumption. Both are S−measurable function and thus depend only

on the current state s, but not on the whole history st. We denote stationary allocations

by {(cy (s) , co (s))}s∈S .
Preferences Preferences for a consumer born in history st with t ≥ 0 are given by

U
(
cyt , c

o
t+1, s

t
)

:=
∫
S
u
(
cyt (s

t), cot+1 (st, s′)
)
P (st, ds

′) for an allocation {(cyt (s∞) , cot (s∞))}∞t=0 .

u is twice continuously differentiable, strictly increasing in both arguments with nega-

tive definite Hessian matrix. The preferences of the initially old consumers in period 0

who live in state s0 are strictly increasing in consumption co (s0). Define U (cy, co, st) :=∫
S
u (cy (st) , c

o (s′))P (st, ds
′) for a stationary allocation {(cy (s) , co (s))}s∈S. With a slight

6As any compact metric space is automatically complete and separable, S is a Polish space.
7We say a function f on S is strictly positive if f(s) > 0 for each s ∈ S.
8Since the function cyt is St−measurable, we use the notation cyt (st) as well as cyt (s∞) . The same

applies for other St−measurable functions.
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abuse of notation we set U(., ., .) = co0 (s0) for the initial old.

Supporting Prices We define m (s, s′) := u2(cy(s),co(s′))∫
S u1(c

y(s),co(s′))P (s,ds′)
for a stationary

allocation. Our assumptions on the transition probabilities ensure that m (s, s′) is a

S ⊗ S−measurable function.9 The functions m serve as supporting prices for a given sta-

tionary allocation.10 They will play a key role in determining whether a given stationary

allocation is efficient.

3 A Necessary Condition for Inefficiency

We first define the notion of efficiency we adopt [see Muench (1977) and Peled (1982)].

Definition 1 A stationary allocation (cy (s) , co (s′)) is interim Pareto efficient if there

does not exist an allocation {(cyt (s∞) , cot (s∞))}∞t=0 such that

U (cy, co, st) ≤ U
(
cyt , c

o
t+1, s

t
)

for each t and s∞ ∈ S∞, with strict inequality on a set Ã of strictly positive P∞-measure,

i.e. for any s∞ ∈ Ã there exists some t with U (cy, co, st) < U
(
cyt , c

o
t+1, s

t
)
.

For each st, define the set of measurable weight functions [Chattopadhyay and Gottardi

(1999)] as U (st) =
{
λ (st, s′) ≥ 0 : λ (st, .) is S−measurable with

∫
S
λ (st, s′)P (st, ds

′) = 1
}

.11

For any path s∞ ∈ S∞, we define (s∞)t as the history up to time t along this path, i.e.

(s∞)t = (s∞0 , s
∞
1 , ..., s

∞
t ) for any t ≥ 0.

As a preliminary step towards our recursive formulation we generalize the necessary

condition of Chattopadhyay and Gottardi (1999) for Pareto inefficiency from the case of

a discrete shock space to our more general setup 12:

9To see this, define a new transition probability by P̃ (s,A×B) =
∫
B
P (s̃, A) dδs (s̃) for any

A,B ∈ S and apply Theorem 18.7 in Aliprantis and Border (1999) to the S ⊗ S−measurable function

u1 (cy (s) , co (s′)) and P̃ . δs denotes the Dirac measure in s ∈ S.
10Since there is only one person (or a group of identical persons) born in each history st, any allocation

will be short-run efficient in the sense that it is not possible to interim Pareto improve by a reallocation
that only changes the allocation of persons born up to some time t. Therefore we do not have to assume
that the allocations we consider are competitive equilibrium allocations, as is necessary with heterogenous
agents who are living during the same periods [see e.g Chattopadhyay and Gottardi (1999)].

11The definition of a weight function λ̃ given in Chattopadhyay and Gottardi (1999) is slightly different
from ours. Because Chattopadhyay and Gottardi (1999) use an abstract date-event tree setting without
objective probabilities, their definition in our expected utility set-up for the special case where S is
finite amounts to setting λ̃ (st, s′) = P (st, s

′) · λ (st, s′) . With their definition,
∑

s′∈S λ̃ (st, s′) = 1 and
the concepts are equivalent (using our condition that

∑
s′∈S λ (st, s′) · P (st, s

′) = 1). The condition for
inefficiency remains unaffected by the definition of the weight function since our supporting prices m (s, s′)
also do not contain the transition probabilities.

12The result of Chattopadhyay and Gottardi (1999) and thus also our result here follow the tradition of
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Proposition 1 If an interior stationary allocation is not interim Pareto efficient, there

exists a set A ∈ St of strictly positive P∞-measure, a St−measurable function C defined

on A and a family of functions λ (st+i, s′) ∈ U (st+i) , i = 0, 1, ... such that

∞∑
i=0

i∏
j=0

λ
(
(s∞)t+j, s∞t+j+1

)
m
(
s∞t+j, s

∞
t+j+1

) ≤ C
(
st
)

(1)

for each path s∞ ∈ A.

Remark 1 It is a straightforward although somewhat lengthy extension of Chattopadhyay

and Gottardi (1999) to prove that that condition (1) is sufficient for a stationary allocation

to be interim Pareto suboptimal in our setup.

Remark 2 It should be noted that in general we cannot expect to obtain a constant C

(independent of st) on the right-hand side of equation (1). This follows from the proof

of Proposition 1 and is consistent with Chattopadhyay and Gottardi (1999), who only

consider a single st, not a set A ∈ St .

4 Recursive Formulation

The necessary condition for interim Pareto optimality for OLG economies given in Propo-

sition 1 uses the full set of supporting prices m to give an answer about the efficiency of

a stationary allocation. But even if one knows the prices of all state contingent claims,

one still has to test for all weight functions λ and check whether one obtains convergence

or divergence in (1). This makes it difficult to decide on interim Pareto efficiency by

applying condition (1) directly. In this section, we propose a recursive formulation of the

condition for interim Pareto inefficiency with the space of shocks S as the state space.

The idea is to reinterpret the condition of Chattopadhyay and Gottardi (1999) (which

we have generalized to our setup) as a minimax problem. First, for a fixed weight function

λ the sum over the product of the (relative) contingent claims prices for the path that

attains the highest sum is computed. Second, the weight function is computed that

minimizes the outcome on these ”highest-sum” paths. If the procedure leads to a finite

value of the sum, then Pareto inefficiency is detected. This procedure can be expressed

recursively, as we will show.

the inefficiency characterization pioneerd by Cass (1972) for production economies. Cass-type inefficiency
characterizations for deterministic OLG models had been derived e.g. by Balsko and Shell (1980) and
Okuno and Zilcha (1980).
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Define U∞ (s0) :=
∏

st U (st) , where the product is taken over all histories st with

st0 = s0 for some s0 ∈ S. Define S∞0 = {s0} ×
∏∞

i=1 Si. For any given starting state s0 ∈ S
we consider

inf
λ∞∈U∞(s0)

sup
s∞∈S∞0

1 +
∞∑
i=0

i∏
j=0

λ
(

(s∞)j , s∞j+1

)
m
(
s∞j , s

∞
j+1

) (2)

We denote by J∗ (s0) the value of this minimax problem. Note that because of the

stationarity of the allocation, the value J∗ for an economy starting after some history st

will only depend on the state st at which the economy starts. Thus the set A ∈ St in

Proposition 1 takes the form A = S × ...× S × Ã for some Ã ∈ S. Also, P∞ (A) > 0 only

if P
(
s, Ã

)
> 0 for some s ∈ S. From our assumption on the transition probabilities we

then have P
(
s′, Ã

)
> 0 for any s′ ∈ S and say that Ã has positive measure. Thus:

Fact If a stationary allocation is Pareto inefficient, there must exist a set of strictly

positive measure Ã ∈ S such that for each s ∈ Ã we have J∗ (s) <∞.

In fact, we will subsequently in the proof of Proposition 3 show that J∗ (s) < ∞ for

all s ∈ S in this case. It is the goal of this section to show that the problem (2) can be

written in a recursive way and that the value function J∗ can be computed as a pointwise

limit by successively applying the recursive formulation to some starting function J0.

First, for each s ∈ S we denote the set of all stationary weight functions by U (s) ={
λ (s, s′) ≥ 0, λ (s, .) is S−measurable with

∫
S
λ (s, s′)P (s, ds′) = 1

}
. Define the Bell-

man equation:

T (J) (s) := 1 + inf
λ(s)∈U(s)

sup
s′∈S

λ (s, s′)

m (s, s′)
· J (s′) (3)

for any nonnegative extended real valued function J. The Bellman operator T allows to

obtain the desired recursive formulation of (2):

Theorem 1 The value function J∗ can be obtained as a fixed point to the Bellman equa-

tion (3), i.e. J∗ = T (J∗).

Now we use the Bellman operator T to compute stepwise a value function that solves

the Bellman equation (3). TN denotes applying N times the operator T . For each s ∈ S
we can as in Bertsekas and Shreve (1978) define J∞ (s) := lim

N→∞
TN (J0) (s) , where we set

J0 ≡ 1. Note that the limit exists since the sequence TN (J0) (s) is by definition increasing.

We now show that:

Proposition 2 (a) J∞ can be used to compute the value function J∗ as a monotone
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limit:

J∞ = T (J∞) = T (J∗) = J∗. (4)

(b) J∗ is a S−measurable function.

It may be of interest that Theorem 1 allows to show that in problem (2) the infimum

is achieved for some λ∞ and the weights doing this have a markovian structure. More

precisely, we have

Proposition 3 There exist λ∗(s) ∈ U(s) for each s ∈ S such that

J∗(s0) = sup
s∞∈S∞0

1 +
∞∑
i=0

i∏
j=0

λ∗
(
s∞j , s

∞
j+1

)
m
(
s∞j , s

∞
j+1

) (5)

for each s0 ∈ S.

5 Complete Characterization of Efficiency of Station-

ary Allocations

This section is a first application of the recursive formulation of the minimax problem

related to the Chattopadhyay and Gottardi (1999) characterization of interim Pareto

inefficiency in OLG models. We restrict attention to stationary allocations in this section

and characterize interim Pareto efficiency of a stationary allocation. Our main result in

this section, Theorem 2, is closely related to a number of contributions to the literature

on efficiency of stationary allocations in OLG models, namely Manuelli (1990), Demange

and Laroque (1999, 2000) as well as Aiyagari and Peled (1991).

Aiyagari and Peled (1991) gave a dominant root characterization of Pareto optimality

of stationary allocations within the class of stationary allocations on a discrete shock

space. This was extended by Demange and Laroque (1999) and Chattopadhyhay and

Gottardi (1999, Theorem 4) as a general characterization of interim Pareto optimality of

stationary allocations, i.e. a characterization of Pareto optimality of stationary allocations

within the class of all allocations.

Manuelli (1990, Theorem 3) derived a characterization of interim Pareto optimality in

a model with an infinite shock space that says an allocation is interim Pareto optimal13 if

and only if the reverse inequality of (7) with≤ instead of> holds for a bounded measurable

13As already noted in Demange and Laroque (1999, 2000), it is, however, sometimes difficult to follow
Manuelli’s proof. In particular, the proof of the necessity of the inequality condition for Pareto optimality
is totally unclear and we are not sure whether a result going beyond Demange and Laroque (2000) holds.
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function η. Clearly, our Theorem 2 (b) and his Theorem 3 are not necessarily equivalent

as long as there is no such thing as a dominant root characterization of optimality for

the case of an infinite state space. Apart from this earlier literature Bloise and Calciano

(2008) characterize robust inefficiency in their Proposition 2 with a condition that has

some similarity with our condition.

In a somewhat different set-up with production and capital as a state variable, but

with a finite number of exogenous shocks, Demange and Laroque (2000), show in their

Theorem 1 that (7) is sufficient for interim Pareto inefficiency, and in their Theorem 2 that

the reverse inequality of (7) with ≤ instead of > is sufficient for interim Pareto optimality.

Our Lemma 4 in the appendix shows the same result as Theorem 2 in Demange and

Laroque (2000). They did, however, not derive a complete characterization of optimality

(see also their Theorem 3 for a partial classification in terms of the spectral radius of a

positive operator, the analogy of the dominant root of a positive matrix).

Proposition 4 If a stationary allocation is interim Pareto inefficient, there exists a

strictly positive measurable function η (s) that is bounded above such that∫
S

m (s, s′) · η (s′)P (s, ds′) > η (s) for all s ∈ S. (6)

The function η can be computed as the monotone limit (or as a fixed point of T ):

η (s) = lim
N→∞

1
TN (J0)(s)

= 1
J∞(s)

= 1
J∗(s)

for all s ∈ S.

To show the converse implication, namely that the existence of such a function η

implies interim Pareto inefficiency we need to add the following continuity assumptions

on the transition probabilities:

Assumption 1 The transition probability P has the Feller property, i.e.
∫
S
f (s′)P (s, ds′)

is continuous in s for each (bounded) continuous function f.

Assumption 2 If sn → s, then P (sn, A)→ P (s, A) for each A ∈ S.

Assumption 2 implies Assumption 1 (see Stokey and Lucas with Prescott (1989)).

Assumption 1 is fullfilled in the set-up of Demange and Laroque (2000) under their as-

sumption of a continuous Markov policy (see p.6 in Demange and Laroque (2000)) in

which the state space S consists of exogenous (finite) shocks and the endogenous variable

capital stock.

We restrict attention to continuous stationary allocation, i.e. stationary allocations

where cy (s) and co (s′) are positive continuous functions on S. Note that since S is com-
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pact, such an allocation will automatically be interior. Under these continuity assumptions

on P we can also strengthen the claim in the previous proposition. We show:

Theorem 2 (a) Let Assumption 1 hold. If a stationary continuous allocation is interim

Pareto inefficient, a upper semicontinuous function η such that (6) holds exists.

Conversely, if for any continuous stationary allocation there exists a strictly positive

continuous function η such that (6) holds, this allocation will be interim Pareto

inefficient.

(b) Under Assumption 2, a continuous stationary allocation is interim Pareto inefficient

if and only if there exists a strictly positive continuous function η such that∫
S

m (s, s′) · η (s′)P (s, ds′) > η (s) for all s ∈ S. (7)

The function η can be computed as the monotone limit (or as a fixed point of T ):

η (s) = lim
N→∞

1
TN (J0)(s)

= 1
J∞(s)

= 1
J∗(s)

for all s ∈ S.

Remark 3 The proof of the only-if part reveals that ineffciency is indeed implied if there

exists a strictly positive bounded measurable function η on S and a δ > 0 such that∫
S
m (s, s′) η (s′)P (s, ds′)− η (s) > δ > 0 for all s ∈ S.14

Under more restrictive assumptions and using an endogenous state space on which

the Feller property holds, Barbie and Hillebrand (2015) show in their Lemma 3.1 (ii) that

condition (7) is necessary and sufficient for suboptimality.

It is of some interest to consider the special case in which utility is additively separable

over time and shocks are i.i.d.. In this case, utility can be represented as u (cy (s)) +∫
S
v (co (s′))P (ds′) , where P is the probability measure according to which the shocks are

distributed and u, v are twice continuously differentiable, strictly increasing and concave

with negative second derivatives. Of course, the preferences of the initially old generation

remains unaffected.

In this case, we do not have to compute the function η explicitly. We have:

Corollary 1 Under additive separable utility and i.i.d. shocks, a continuous stationary

allocation is interim Pareto inefficient if and only if∫
S

v′ (co (s′))

u′ (cy (s′))
P (ds′) > 1. (8)

14We would like to thank an anonymous referee for pointing this out.
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6 Monetary Equilibria

In this section, the utility function is assumed to be additively separable and takes the

form u (cy (s)) +
∫
S
v (co (s′))P (s, ds′) . Otherwise it satisfies all the assumptions from the

previous sections, and in addition we assume for u the Inada condition lim
x→0

u′(x) =∞.

Furthermore, we impose a stronger continuity requirement on the transition probabili-

ties than in the previous section. Let P (S) be the set of probability measure on S. For λ ∈
P(S), the total variation norm ‖λ‖TV is the norm defined by ‖λ‖TV := sup

∑k
i=1 |λ (Ai)| ,

where the supremum is taken over all finite partitions of S into disjoint measurable sub-

sets. We have that ‖λn − λ‖TV → 0 if and only if lim
n→∞

|λn (A)− λ (A)| = 0 for all A ∈ S
and the convergence is uniform in A. Thus convergence in the variation norm requires set-

wise convergence to hold uniformly (over all measurable subsets). This strengthens our

continuity requirement from Assumption 2 for the transition probabilities from the pre-

vious section [see Stokey and Lucas with Prescott (1989), chapter 11 for a more detailed

account].

Assumption 3 The mapping P : S → P(S) given by P (s, ·) is continuous, where P(S)

is endowed with the total variation norm.

In comparison to the continuity requirement from p. 271 in Manuelli (1990), Manuelli’s

condition requires Lipschitz continuity for the transition probability with respect to a

special integrand, which is determined from the utility function. We could also impose

such a condition, but we think it is more natural to have a separate condition on the

transition probabilities.

To motivate our definition of monetary equilibrium, consider an intrinsically useless

asset that is owned by the initial old. Each initial old person is endowed with unit of

this asset and his old age consumption. Apart from this, all persons in the economy are

endowed with a stationary allocation {cy (s) , co (s)}s∈S . A monetary equilibrium is given

if the market for the asset called money clears after each history at a strictly positive price

for the asset. From the first order conditions of the consumers, this gives the following

definition:

Definition 2 A stationary monetary equilibrium is given by a continuous stationary allo-

cation {cy (s) , co (s)}s∈S and a continuous strictly positive function p (s) with p (s) ≤ cy (s)

for each s ∈ S such that the following first order condition with respect to an asset with

price p holds: ∫
S

v′ (co (s′) + p (s′))

u′ (cy (s)− p (s))
· p (s′)P (s, ds′) = p (s) for all s ∈ S.
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We say that such a tuple {cy (s) , co (s) , p (s)}s∈S is a monetary equilibrium associated

with allocation {cy (s) , co (s)}s∈S . This definition is equivalent to the one of Manuelli

(1990).15 The characterization result of this section is:

Theorem 3 Let a continuous stationary allocation be given and let Assumption 3 hold.

Then an allocation is interim Pareto inefficient if and only if there exists a monetary

equilibrium associated with it. Furthermore, the monetary equilibrium allocation

{cy (s)− p (s) , co (s) + p (s)}s∈S is interim Pareto efficient.

Our results contain the results of Manuelli (1990) in Theorem 1 and 2 of his paper as

a special case. In his Theorem 1, Manuelli gives a sufficient condition for the existence of

a monetary equilibrium. He shows that if the condition

min
s∈S

∫
S

v′ (co (s′))

u′ (cy (s′))
P (s, ds′) > 1

holds, then a monetary equilibrium exists. His condition holds if and only if our in-

efficiency condition (7) holds for the special choice η (s) = 1
u′(cy(s′))

. His Theorem 1 is

therefore an immediate consequence of our Theorems 2 and 3. In his proof, Manuelli

(1990) also construct of fixed point mapping as we do in Lemma 1, however mapping

from the left-hand to the right-hand side of the Euler equation. He then uses a different

fixed point argument due to his different assumptions on transition probabilities etc.. We

use instead a vanishing dividends argument that goes back in its basic form, for a finite

state context, where instead of Euler equations a classical Arrow-Debreu existence proof

is used, to Aiyagari and Peled (1991).

Manuelli’s Theorem 2 is a necessary and sufficient condition for the existence of a

monetary equilibrium in the case of separable utility and i.i.d. shocks. He shows that

a monetary equilibrium exists if and only if (8) holds. With our Corollary 1 and our

Theorem 3 this also follows immediately from our results.

Appendix: Proofs

Proposition 1

Proof. Let cy (s) and co (s′) be the given stationary inefficient allocation and let

{(c̃yt (s∞) , c̃ot (s∞))}∞t=0 be an improving allocation. For each history st define εyt (st) =

15See Manuelli (1990), p.273 equation (1). Manuelli does not have a constant stock of money (equal
to 1) as we have, but a stock of money that changes over time. This difference is, however, inessential
for the results and our assumption on the stock of money follows by setting his function g (s, s′) = 1.
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c̃yt (st)− cy (st) and εot (st) = c̃ot (st)− co (st) . For each path s∞, define

T (s∞) = min {t ∈ N∪{∞} |εo (st) 6= 0} . It is easy to see that T is a stopping time and

hence that {s∞ |T (s∞) = t} ∈ St for each t. Since P∞
(
Ã
)
> 0, given the definition of Ã,

we must have P∞ ({T <∞}) > 0. Since {T <∞} = ∪∞t=0 {T = t} , there must exist some

t with P∞ ({T = t}) > 0. Since the new allocation is interim Pareto improving, we must

have that P∞ ({T = t} ∩ {s∞ |εot (st) > 0}) > 0. Take A := {T = t} ∩ {s∞ |εot (st) > 0} .
Since the original stationary allocation is interior, we have k < cy (s) < K and k <

co (s′) < K for all s, s′ ∈ S. Since the utility functions are concave, we can assume that

0 < k− ε < c̃yt (s∞) , c̃ot (s∞) < K for ε > 0 for the improving allocation. Now we have for

each path s∞ by a second order Taylor expansion (where 〈, 〉 denotes the inner product

in euclidian space):

u
(
c̃yt (s∞) , c̃ot+1 (s∞)

)
− u

(
cy (s∞t ) , co

(
s∞t+1

))
=

〈
Du
(
cy (s∞t ) , co

(
s∞t+1

))
,
(
εyt
(
(s∞)t

)
, εo
(
(s∞)t+1))〉

+
1

2

(
εyt
(
(s∞)t

)
, εo
(
(s∞)t+1))′D2u

(
ξyt
(
(s∞)t

)
, ξot+1

(
(s∞)t+1)) (εyt ((s∞)t

)
, εot+1

(
(s∞)t+1)) ,

where ξyt (st) and ξot+1 (st+1) are from the compact set [k − ε,K].

Since matrix D2u
(
ξyt (st) , ξot+1 (st+1)

)
is negative definite, and the function u is twice

continuously differentiable, we have (‖.‖ denotes the euclidian norm):

−1

2

(
εyt
(
(s∞)t

)
, εo
(
(s∞)t+1))′D2u

(
ξyt
(
(s∞)t

)
, ξot+1

(
(s∞)t+1)) (εyt ((s∞)t

)
, εot+1

(
(s∞)t+1))

≥ H
(
ξyt
(
(s∞)t

)
, ξot+1

(
(s∞)t+1)) · ∥∥εyt ((s∞)t

)
, εot+1

(
(s∞)t+1)∥∥2

for some strictly positive continuous function H.16 Since ξ are elements of a compact set

for each history st, there is a strictly positive constant H such that for all histories (s∞)t:

−1

2

(
εyt
(
(s∞)t

)
, εo
(
(s∞)t+1))′D2u

(
ξyt
(
(s∞)t

)
, ξot+1

(
(s∞)t+1)) (εyt ((s∞)t

)
, εo
(
(s∞)t+1))

≥ H ·
∥∥εyt ((s∞)t

)
, εo
(
(s∞)t+1)∥∥2 .

16For any positive definite matrix A, the problem

min
{x|‖x‖≤1}

x′

‖x‖
A

x

‖x‖

has a strictly positive solution ϑ, which by the Berge maximum theorem is a continuous function of
the entries of the matrix A.
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Thus we have for each given history st

0 ≤
∫
S

u
(
c̃yt
(
st
)
, c̃ot+1

(
st, s′

))
P (st, ds

′)−
∫
S

u (cy (st) , c
o (s′))P (st, ds

′)

≤
∫
S

〈
Du (cy (st) , c

o (s′)) ,
(
εyt
(
st
)
, εo
(
st, s′

))〉
P (st, ds

′)

−1

2
H

∫
S

∥∥εy (st) , εo (st, s′)∥∥2 P (st, ds
′) .

It follows that∫
S

u2 (st, s
′) · εo

(
st, s′

)
P (st, ds

′) ≥ −εy
(
st
) ∫

S

u1 (st, s
′)P (st, ds

′) +
1

2
H
(
εy
(
st
))2

.

This is equivalent to∫
S

u2 (st, s
′)∫

S
u1 (st, s′)P (st, ds′)

· εo
(
st, s′

)
P (st, ds

′) ≥ −εy
(
st
)

+
1

2

H (εy (st))
2∫

S
u1 (st, s′)P (st, ds′)

.

Since u1 (st, s
′) is bounded above, by continuity and compactness, there is some ρ > 0

such that (using that εo (st) = −εy (st)):∫
S

u2 (st, s
′)∫

S
u1 (st, s′)P (st, ds′)

· εo
(
st, s′

)
P (st, ds

′) ≥ εo
(
st
)

+ ρ
(
εo
(
st
))2

If we define εo+ (st) := max {εo (st) , 0} for each history st, we have∫
S

u2 (st, s
′)∫

S
u1 (st, s′)P (st, ds′)

· εo+
(
st, s′

)
P (st, ds

′) ≥ εo+
(
st
)

+ ρ
(
εo+
(
st
))2

. (9)

For each st ∈ A, we define now λ (st, s′) :=

u2(st,s
′)∫

S u1(st,s′)P(st,ds′)
·εo+(st,s′)∫

S

u2(st,s′)∫
S u1(st,s′)P(st,ds′)

·εo+(st,s′)P (st,ds′)
. Note that∫

S
u2(st,s′)∫

S u1(st,s
′)P (st,ds′)

· εo+ (st, s′)P (st, ds
′) > 0 since εo+ (st) > 0. Taking the inverse in (9) ,

we obtain

1∫
S

u2(st,s′)∫
S u1(st,s

′)P (st,ds′)
· εo+ (st, s′)P (st, ds′)

≤ 1

εo+ (st) + ρ (εo+ (st))2
.

Using the definition of λ, for states s′ with εo+ (st, s′) > 0 this can be written as

λ
(
st, s′

)
· 1

u2(st,s′)∫
S u1(st,s

′)P (st,ds′)
· εo+ (st, s′)

≤ 1

εo+ (st) + ρ (εo+ (st))2
.

Continuing as in Chattopadhyay and Gottardi (1999), starting from some history
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st ∈ A, we obtain for any path with εo+ (su, s′) > 0 for all su, u ≥ t,

u−t∏
j=0

λ
(
(s∞)t+j, s∞t+j+1

)
m
(
s∞t+j, s

∞
t+j+1

) · 1

V · εo+ (su+1)
+ ρ̃

u−t−1∑
i=0

i∏
j=0

λ
(
(s∞)t+j, s∞t+j+1

)
m
(
s∞t+j, s

∞
t+j+1

) ≤ 1

V · εo+ (st)
− ρ̃

where V and ρ̃ are some positive constants. Thus, for C (st) := 1
V εo+(st)ρ̃

− 1 we obtain the

formula of the proposition. For all other paths, we have λ (su, s′) = 0 after some history

and the same formula holds. This proves the proposition.

Theorem 1

Proof. We first show J∗ (s) ≤ T (J∗) (s) for all s ∈ S. Note that for any λ (s) ∈ U (s)

from the definition of J∗ (s′) as the infimum, we can choose ”continuation λ’s”, i.e. λ∞ ∈
U∞ (s′) for the minimax problem starting with s′ ∈ S, such that

J∗ (s) ≤ 1 + sup
s′∈S

λ (s, s′)

m (s, s′)
· (J∗ (s′) + ε (s, s′)) (10)

where ε (s, s′) = m(s,s′)
λ(s,s′)

· ε for some ε > 0 if λ (s, s′) > 0 and ε if λ (s, s′) = 0. To see this,

note that any λ∞ ∈ U∞(s) can be written as (λ1, (λ
∞
−1(s

′))s′∈S), where λ1 ∈ U(s) and

λ∞−1(s
′) ∈ U∞(s′) for each s′ ∈ S. Further, note that

J∗(s) ≤ 1 + sup
s∞∈S∞s

(
λ1(s, s

∞
1 )

m(s, s∞1 )

(
1 +

∞∑
i=1

i∏
j=1

λ−1((s
∞)j, s∞j+1)

m(s∞j , s
∞
j+1)

))

where S∞s := {s} × S × S × .... Denote the right-hand side by M(λ1, (λ
∞
−1(s

′))s′∈S)).

Choose λ∞−1(s
∞
1 ) for each s∞1 ∈ S such that(

1 +
∞∑
i=1

i∏
j=1

λ−1((s
∞)j, s∞j+1)

m(s∞j , s
∞
j+1)

)
≤ J∗(s∞1 ) + ε (s, s∞1 ) (11)

for all s∞ ∈ {s0} × {s∞1 } × S × S × .... (clearly such a choice is always possible). Let

s∞n ∈ S∞s be a sequence such that

1 +

(
λ1(s, s

∞
1n)

m(s, s∞1n)

(
1 +

∞∑
i=1

i∏
j=1

λ−1((s
∞
n )j, s∞j+1n)

m(s∞jn, s
∞
j+1n)

))
≥M(λ1, (λ

∞
−1(s

′))s′∈S))− 1

n
(12)
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if M(λ1, (λ
∞
−1(s

′))s′∈S)) is finite and such that the left hand side in (12) is ≥ n if

M(λ1, (λ
∞
−1(s

′))s′∈S)) = +∞. Then we have

1 + sup
s′∈S

λ (s, s′)

m (s, s′)
· (J∗ (s′) + ε (s, s′)) ≥ 1 +

(
λ1(s, s

∞
1n)

m(s, s∞1n)
(J∗(s∞1n) + ε (s, s∞1n))

)
≥M(λ1, (λ

∞
−1(s

′))s′∈S))− 1

n

where the last inequality follws from (12) and (11) if M(λ1, (λ
∞
−1(s

′))s′∈S)) is finite. The

case M(λ1, (λ
∞
−1(s

′))s′∈S)) = +∞ is similar. Since this holds for any n, this proves (10).

Thus

J∗ (s) ≤ 1 + sup
s′∈S

λ (s, s′)

m (s, s′)
· J∗ (s′) + ε.

Now, by the definition of the infimum, we have for some sequence of λn:

T (J∗) (s) = lim
n→∞

[
1 + sup

s′∈S

λn (s, s′)

m (s, s′)
· J∗ (s′)

]
.

Thus, for this sequence:

J∗ (s) ≤ 1 + lim
n→∞

sup
s′∈S

λn (s, s′)

m (s, s′)
· J∗ (s′) + ε.

This yields by using the previous expression for T (J∗) (s)

J∗ (s) ≤ T (J∗) (s) + ε.

Since ε was arbitrarily chosen, we have the desired conclusion:

J∗ (s) ≤ T (J∗) (s) .

To prove the converse inequality, J∗ ≥ T (J∗) , define for any λ∞ ∈ U∞ (s0): Jλ∞ (s0) :=

sup
s∞∈S∞0

1 +
∑∞

i=0

∏i
j=0

λ∞((s∞)j ,s∞j+1)
m(s∞j ,s∞j+1)

. It suffices to show that Jλ∞ ≥ T (J∗) for arbitrary

transfer patterns λ∞ ∈ U∞ (s0). In fact, we have for each s0 ∈ S:

Jλ∞ (s0) ≥ sup
s∞∈S∞0

[
1 +

λ∞ (s0, s
∞
1 )

m (s0, s∞1 )
· Jλ∞1 (s∞1 ) (s∞1 )

]
≥ 1+sup

s′∈S

λ∞ (s0, s
′)

m (s0, s′)
·J∗ (s′) ≥ T (J∗) (s0)

with λ∞1 (s∞1 ) ∈ U (s∞1 ) being the restriction of λ∞ to the histories following (s0, s
∞
1 ) . To

see the first inequality, note that if Jλ∞ (s0) < sup
s∞∈S∞0

[
1 +

λ∞(s0,s∞1 )
m(s0,s∞1 )

· Jλ∞1 (s∞1 ) (s∞1 )

]
, there

would exist some s̃ ∈ S such that Jλ∞ (s0) < 1 + λ∞(s0,s̃)
m(s0,s̃)

· Jλ∞1 (s̃) (s̃) . By the definition

of Jλ∞1 (s̃) (s̃) , this would imply the existence of some path s̃∞ ∈ S∞0 with s̃∞1 = s̃ and
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Jλ∞ (s0) < 1 +
∑∞

i=0

∏i
j=0

λ∞((s̃∞)j ,s̃∞j+1)
m(s̃∞j ,s̃∞j+1)

, contradicting the definition of Jλ∞ (s0)
17. This

proves the theorem.

Proposition 2

Proof. (a) For λ (s) ∈ U (s) , define Tλ (J) := 1 + sup
s′∈S

λ(s,s′)
m(s,s′)

· J (s′) for any s ∈ S and

any extended real-valued function J. We clearly have J∗ ≥ J0 ≡ 1. Since J∗ = T (J∗) , we

have J∗ = TN (J∗) ≥ TN (J0) , which implies by the definition of J∞ that J∗ ≥ J∞.

To prove the converse inequality, note that TN (J0) (s) is finite for each s and N and

that Tλ∗k
(
T k−1 (J0)

)
= T k (J0) where λ∗k (s, s′) = m(s,s′)

Tk−1(J0)(s′)
·c∗k (s) and c∗k (s) is determined

by
∫
S
λ∗k (s, s′)P (s, ds′) = 1. To see that Tλ∗k(T k−1 (J0)) = T k (J0) , note that for any other

function λ̂ (s) ∈ U (s) that differs from λ∗k (s) on a set of P (s, .)−positive measure, we

have λ̂ (s, s′) > λ∗k (s, s′) for all s′ ∈ A with P (s, A) > 0 and A ∈ S. Thus sup
s′∈S

1 + λ̂(s,s′)
m(s,s′)

·

T k−1 (J0) (s′) > 1 + c∗k (s) = sup
s′∈S

1 +
λ∗k(s,s

′)

m(s,s′)
·T k−1 (J0) (s′) and we have Tλ̂

(
T k−1 (J0)

)
(s) >

Tλ∗
(
T k−1 (J0)

)
(s) . For any λ̂ (s) ∈ U (s) that differs from λ∗ (s) on a set of P (s, .)−zero

measure, we have that Tλ̂
(
T k−1 (J0)

)
(s) = 1 + c∗k (s) = Tλ∗k

(
T k−1 (J0)

)
(s) .

It suffices to prove that J∗ (s0) ≤ lim
k→∞

(Tλ∗k ...Tλ∗1)(J0) (s0) . We have for any s0 ∈ S

sup
s∞∈S∞0

1 +
∞∑
i=0

i∏
j=0

λ∗i−j+1 (sj, sj+1)

m (sj, sj+1)
≤ lim

k→∞

(
Tλ∗k ...Tλ∗1

)
(J0) (s0) . (13)

This inequality follows from the following arguments. By definition we have that:

(
Tλ∗k ...Tλ∗1

)
(J0) (s0) = 1 +

(
sup
s1∈S

λ∗k (s0, s1)

m (s0, s1)

+
λ∗k (s0, s1)

m (s0, s1)
·
(

sup
s2∈S

λ∗k−1 (s1, s2)

m (s1, s2)

+
λ∗k−1 (s1, s2)

m (s1, s2)
·
(

sup
s3∈S

λ∗k−2 (s2, s3)

m (s2, s3)
+
λ∗k−2 (s2, s3)

m (s2, s3)
·

... · sup
sk−1∈S

(
λ∗2 (sk−2, sk−1)

m (sk−2, sk−1)
+
λ∗2 (sk−2, sk−1)

m (sk−2, sk−1)
· sup
sk∈S

λ∗1 (sk−1, sk)

m (sk−1, sk)

)
...))).

Fix some s̃k ∈ {s0}×S1× ...×Sk and choose si = s̃i for i = 0, ..., k history-independent in

the supremum problems on the right hand side of the previous equality. We then obtain:

1 +
k−1∑
i=0

i∏
j=0

λ∗i−j+1 (s̃j, s̃j+1)

m (s̃j, s̃j+1)
≤
(
Tλ∗k ...Tλ∗1

)
(J0) (s0) .

17The second and third inequality hold trivially and appear in similar form on p.73 of Bertsekas and
Shreve (1978).
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Thus it follows that for any s̃∞ ∈ S∞0 :

1 +
∞∑
i=0

i∏
j=0

λ∗i−j+1 (s̃j, s̃j+1)

m (s̃j, s̃j+1)
≤ lim

k→∞

(
Tλ∗k ...Tλ∗1

)
(J0) (s0) .

This proves (13) . Together with the inequality J∗ (s0) ≤ 1+ sup
s̃∞∈S∞0

∑∞
i=0

∏i
j=0

λ∗i−j+1(s̃j ,s̃j+1)

m(s̃j ,s̃j+1)
,

this proves the result.

(b) Note that TN (J0) is S−measurable by induction [using Theorem 18.7 in Aliprantis

and Border (1999)]. Thus J∗ is S−measurable as the limit.

Proposition 3

Proof. Recall that J∗ = T (J∗) means that J∗(s) = 1 + inf
λ(s)∈U(s)

sup
s′∈S

λ(s,s′)
m(s,s′)

· J∗ (s′) . Thus

J∗(s) <∞ for some s ∈ S if and only if J∗ (s) <∞ for all s ∈ S. To see this, notice that

J∗ (s) = ∞ for some s ∈ S implies the existence of A ∈ S with P (s, A) = 1 such that

J∗ (s′) =∞ for each s′ ∈ A. From our assumption about the transition probabilities this

implies P (s̃, A) = 1 for each s̃ ∈ S. But then it immediately follows from (3) that J∗ (s̃) =

∞ for each s̃ ∈ S. Note that in this case any choice of λ(s) ∈ U(s) satisfies the condition

in the proposition. In the other case λ∗ (s, s′) = m(s,s′)
J∗(s′)

· c (s) with
∫
S
λ (s, s′)P (s, ds′) = 1

attains the minimum in the infimum part of recursive the minimax problem. This integral

is well-defined since J∗ is measurable by Proposition 2 (b) and is bounded below. We

further have

J∗(s0) = 1 + sup
s1∈S

λ∗ (s0, s1)

m (s0, s1)
· J∗ (s1) = 1 + sup

s1∈S

λ∗ (s0, s1)

m (s0, s1)
·
(

1 + sup
s2∈S

λ∗ (s1, s2)

m (s1, s2)
· J∗ (s2)

)
= 1 + sup

s1∈S

λ∗ (s0, s1)

m (s0, s1)
·
(

1 + sup
s2∈S

λ∗ (s1, s2)

m (s1, s2)
·
(
...

(
1 + sup

sn∈S

λ∗ (sn−1, sn)

m (sn−1, sn)
· J∗ (sn)

)
...

))
for each n ∈ N. Since J∗(s) ≥ 1 for each s ∈ S, we obtain for each fixed path s∞ ∈ S∞0

J∗(s0) ≥ 1 +
λ∗ (s∞0 , s

∞
1 )

m (s∞0 , s
∞
1 )
·

(
1 +

λ∗ (s∞1 , s
∞
2 )

m (s∞1 , s
∞
2 )
·

(
...

(
1 +

λ∗
(
s∞n−1, s

∞
n

)
m
(
s∞n−1, s

∞
n

)) ...))

which is the same as

J∗(s0) ≥ 1 +
n−1∑
i=0

i∏
j=0

λ∗
((
s∞j
)
, s∞j+1

)
m
(
s∞j , s

∞
j+1

)
Since n and the path s∞ ∈ S∞0 were chosen arbitrarily, the equation in the proposition

follows as an inequality ≥. But the reverse inequality holds by definition, so that the

proposition follows.
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Proposition 4

Proof. Note that J∗ (s) = 1 + c (s) for all s ∈ S for the c(s) defined in the proof of

Proposition 3. Thus we have:∫
S

m (s, s′)

J∗ (s′)
· c (s)P (s, ds′) = 1

⇐⇒
∫
S

m (s, s′) · J
∗ (s)

J∗ (s′)
P (s, ds′) =

J∗ (s)

c (s)
=

1

c (s)
+ 1 > 1.

The inequality is thus equivalent to∫
S

m (s, s′) · 1

J∗ (s′)
P (s, ds′) >

1

J∗ (s)
.

Therefore η(s) := 1
J∗(s)

does the job.

Theorem 2

Proof. We first prove the ”only if”-part of (a) and (b)18: Note that since the allocation

is interior and the function η is bounded above, for α sufficiently small and all s ∈ S, the

function

h (s, α) =

∫
S

u (cy (s)− αη (s) , co (s, s′) + αη (s′))P (s, ds′)

is well defined. We show now that h (s, α) > h (s, 0) for each s ∈ S and some α > 0.

The reallocation that gives co (s0) + αη (s0) to each initial old person in starting state s0
and gives to each two period lived person born in state s, cy (s)−αη (s) when young and

co (s, s′) + αη (s′) when old is interim Pareto improving for α sufficiently small.

Notice that the derivative of h (s, α) with respect to α is:19

h′(s, α) =

∫
S

u1 (s, s′, α) (−η (s))P (s, ds′) +

∫
S

u2 (s, s′, α) η (s′)P (s, ds′) .

The second order derivative can be computed with similar arguments and is, as a contin-

uous function of α, bounded below by some negative number for values of α in a compact

intervall around zero. We now have by a second order expansion for values of α in this

intervall:
h (s, α)− h (s, 0)

α
≥ h′ (s, 0)−Hα

for some H > 0. By (7) and the continuity assumptions and the compactness of S,∫
S
u2 (s, s′) η (s′)P (s, ds′) −

∫
S
u1 (s, s′) η (s)P (s, ds′) > δ > 0 for all s ∈ S. Thus

18Demange and Laroque (2000) have a similar proof of their Theorem 1.
19That we are allowed to change the order of differentiation and integration when we differentiate with

respect to α follows from a standard dominated convergence argument, since given that η is bounded
above and the allocation is interior, the derivative with respect to α of the integrand is pointwise bounded
by a constant, which is integrable with respect to the probability measure P (s, ds′).
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h (s, α) > h (s, 0) for α sufficiently small and the result follows.

The ”if”-part of (a) follows since by induction and Lemma 9.5 in Stokey and Lucas

with Prescott (1989) c∗k (s) from the proof of Proposition 2 (a) is a continuous function

under Assumption 1. Thus TN (J0) (s) is continuous and J∗ (s) is - by Proposition 2 (b) -

lower semicontinuous as the monotone limit of continuous functions. Hence 1
J∗(s)

is upper

semicontinuous.

Now we turn to the ”if”-part of (b): We show that J∗ (s) and hence η (s) in (6) are

continuous on S under the continuity assumptions on allocations and transition probabil-

ities. To see this, note that the continuity of J∗ is equivalent to the continuity of c (s) ,

which is in fact equivalent to the continuity of
∫
S
m(s,s′)
J∗(s′)

P (s, ds′) , where we can only use

that J∗ (s′) is a measurable function by Proposition 2 (b). We have∣∣∣∣∫
S

m (sn, s
′)

J∗ (s′)
P (sn, ds

′)−
∫
S

m (s, s′)

J∗ (s′)
P (s, ds′)

∣∣∣∣
≤
∫
S

|m (sn, s
′)−m (s, s′)| 1

J∗ (s′)
P (sn, ds

′)+

∣∣∣∣∫
S

m (s, s′)

J∗ (s′)
P (sn, ds

′)−
∫
S

m (s, s′)

J∗ (s′)
P (s, ds′)

∣∣∣∣
The first summand converges to zero as n → ∞ because m (s, s′) is a uniformly

continuous function on S×S and 1
J∗(s′)

is bounded above, the second summand converges

to zero by Assumption 2 on P (s, ·) [see Exercise 11.2 on p.335 in Stokey and Lucas with

Prescott (1989)]. Thus J∗ (s) and hence η (s) is a continuous function.

Corollary 1

Proof. If (8) holds, we have that (7) holds for η (s) = 1
u′(cy(s))

. Conversely, if (7) holds

for some continuous η, by defining α (s) = η (s) · u′ (cy (s)) , (7) is equivalent to∫
S

v′ (co (s′))

u′ (cy (s′))
· α (s′)P (ds′) > α (s) for all s ∈ S

Since the left hand side of this inequality is independent of s,
∫
S
v′(co(s′))
u′(cy(s′))

·α (s′)P (ds′) >

α, where α := max
s∈S

α (s) , holds. But then also

∫
S

v′ (co (s′))

u′ (cy (s′))
· αP (ds′) > α

holds, which is equivalent to (8) .

Theorem 3

We first show the ”only if”-part of the theorem, namely that if the original stationary

(autarky) allocation is inefficient, then there exists a stationary monetary equilibrium.

This is done in two steps. First, we show that for an artificial economy with strictly

positive dividends, there exists a stationary equilibrium (Lemma 1). Second, we show
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that by letting the dividends go to zero, the limit is the desired monetary equilibrium if

the original equilibrium was inefficient (Lemma 2).20

Let d > 0 be the dividend that is paid independent of the history at each date-

event. Let dn ↓ 0 be a given sequence of dividends that converges to zero. As additional

notation, define co := min
s∈S

co (s) , co := max
s∈S

co (s) , cy := min
s∈S

cy (s) and cy := max
s∈S

cy (s) .

‖.‖∞ denotes the supremum norm on the space of continuous functions C (S) . We first

show that for a fixed dn, a stationary solution of the Euler equation exists:

Lemma 1 There exists a positive continuous function pn (s) such that

u′ (cy (s)− pn (s)) pn (s) =

∫
S

v′ (co (s′) + dn + pn (s′)) · (dn + pn (s′))P (s, ds′) . (14)

Proof. The proof of existence of such a function pn is a fixed point problem. We

apply Schauder’s fixed point theorem to an operator T̃n that we define by:

T̃n = T2 ◦ T1n,

where

T1n : C̃ (S)→ ˜̃
C (S)

T1n (p) (s) =

∫
S

v′ (co (s′) + dn + p (s′)) · (dn + p (s′))P (s, ds′) .

Here, C̃ (S) = {f ∈ C (S) |0 ≤ f (s) ≤ cy (s)} and˜̃
C (S) = {f ∈ C (S) |0 ≤ f (s) ≤ v′ (co) · (d1 + cy (s))} . Clearly, from our assumptions,

the function T1n (p) is continuous and 0 ≤ T1n (p) (s) ≤ v′ (co) · (d1 + cy (s)) . Thus the

mapping is well defined. Also, define the mapping:

T2 :
˜̃
C (S)→ C+ (S)

u′ (cy (s)− T2 (h) (s)) · T2 (h) (s) = h (s)

Note that the mapping f (x) = u′ (y − x)x is monotone and thus with the Inada

condition invertible for every z = f(x) and that T2 (h) (sn) → T2 (h) (s) when sn → s.

Thus also T2 is well defined.

We next show that T̃n is a continuous mapping, i.e.
∥∥∥T̃n (pm)− T̃n (p)

∥∥∥
∞
→ 0 when

‖pm − p‖∞ → 0. We do this by showing that T1n and T2 are both continuous mappings.

First, T1n is continuous: Let ‖pm − p‖∞ → 0. We have

‖T1n (pm)− T1n (p)‖∞

20In the context with a finite state space, Aiyagari and Peled (1991) use the same basic idea, but the
details of the arguments are different.
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= sup
s∈S

∣∣∣∣∫
S

[v′ (co (s′) + dn + pm (s′)) (dn + pm (s′))− v′ (co (s′) + dn + p (s′)) (dn + p (s′))]P (s, ds′)

∣∣∣∣
≤ sup

s∈S

∫
S

|v′ (co (s′) + dn + pm (s′)) (dn + pm (s′))− v′ (co (s′) + dn + p (s′)) (dn + p (s′))|P (s, ds′) .

Note that the function g (x, s′) := v′ (co (s′) + dn + x)·(dn + x) is continuous on [0, cy]×
S and thus uniformly continuous on this compact set. Thus for each ε > 0, there is a δ > 0

such that |g (pm (s′) , s′)− g (p (s′) , s′)| < ε for all s′ ∈ S whenever ‖pm − p‖∞ < δ. From

the definition of g it thus follows that ‖T1n (pm)− T1n (p)‖∞ < ε when ‖pm − p‖∞ < δ,

which proves the result.

Second, T2 is continuous: Consider the function g̃ (s, y) (implicitly) defined by:

u′ (cy (s)− g̃ (s, y)) g̃ (s, y) = y. g̃ is continuous on S ×
[
0, Ã

]
, where Ã := max

s∈S
v′ (co) ·

(d1 + cy (s)) . Thus it is uniformly continuous on this compact set, which implies that for

each ε > 0 there exists a δ > 0 such that
∣∣∣g̃ (s, ĥ (s)

)
− g̃ (s, h (s))

∣∣∣ < ε for each s ∈ S

whenever
∥∥∥ĥ− h∥∥∥

∞
< δ. This implies that T2 is continuous on

˜̃
C (S) .

We now show that T̃n

(
C̃ (S)

)
⊆ C̃ (S) for each n. Note that given T1n (p) (s) ,

T̃n (p) (s) is determined by u′
(
cy (s)− T̃n (p) (s)

)
· T̃n (p) (s) = T1n (p) (s) , which clearly

implies 0 ≤ T̃n (p) (s) ≤ cy (s) and thus T̃n

(
C̃ (S)

)
⊆ C̃ (S) .

Clearly, F :=
⋃∞
n=1 T̃n

(
C̃ (S)

)
⊆ C̃ (S) , and thus the set F is pointwise bounded. We

want to show that the set F is also equicontinuous. By the Arzela-Ascoli Theorem, this

implies together with the fact that F is pointwise bounded that F is relatively compact.

To show that F is equicontinuous, we have to show that for each ε > 0 there exists a

δ > 0 such that d (s, s̃) < δ implies |p (s)− p (s̃)| < ε for each p ∈ F . Let p = T2 ◦ T1n (p̃)

for some p̃ ∈ C̃ (S) and some n be given. For s, s̃ ∈ S we have

|T1n (p̃) (s)− T1n (p̃) (s̃)|

=

∣∣∣∣∫
S

v′ (co (s′) + dn + p̃ (s′)) · (dn + p̃ (s′)) (P (s, ds′)− P (s̃, ds′))

∣∣∣∣
≤ Ã ‖P (s, ds′)− P (s̃, ds′)‖TV

By Assumption 3, the mapping P (·, ds′) from S to P (S) is continuous when P (S)

is endowed with the variation norm. Since S is compact, the mapping is uniformly

continuous and so for each ε1 > 0 there exists a δ1 > 0 such that d (s, s̃) < δ1 implies

|T1n (p̃) (s)− T1n (p̃) (s̃)| <
√
ε1
2

for each p̃ ∈ C̃ (S) and each n.

Next consider the mapping f defined by u′ (z − f (y, z)) f (y, z) = y on
[
0, Ã

]
×[cy, cy].

This mapping is uniformly continuous. Using the definition of T2, for each ε > 0

there exists a ε1 > 0 such that |cy (s)− cy (s̃)|2 + |T1n (p̃) (s)− T1n (p̃) (s̃)|2 < ε1 im-

plies |p (s)− p (s̃)| < ε. Note that |cy (s)− cy (s̃)|2 + |T1n (p̃) (s)− T1n (p̃) (s̃)|2 < ε1 holds

especially if |cy (s)− cy (s̃)| <
√
ε1
2

and |T1n (p̃) (s)− T1n (p̃) (s̃)| <
√
ε1
2
.

Finally, by assumption, cy (s) is a uniformly continuous function, so for each ε1 > 0
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there exists a δ2 > 0 such that d (s, s̃) < δ2 implies |cy (s)− cy (s̃)| <
√
ε1
2
. Define δ :=

min {δ1, δ2} . Thus overall, we have that d (s, s̃) < δ implies |T1n (p̃) (s)− T1n (p̃) (s̃)| <
√
ε1
2

for each p̃ ∈ C̃ (S) and each n and |cy (s)− cy (s̃)| <
√
ε1
2

, and thus that

|T2 ◦ T1n (p̃) (s)− T2 ◦ T1n (p̃) (s̃)| < ε for each p̃ ∈ C̃ (S) and each n, proving that F is

equicontinuous.

The operator T̃n thus satisfies all the requirements of the Schauder fixed point theorem

as stated in Heuser (2004), Theorem 230.4 (b) and and we have a sequence of fixed points

pn = T̃n (pn).

Remark 4 Lemma 17.5 in Stokey and Lucas with Prescott (1989) shows equicontinuity

for the image of an operator (to be able to apply Schauder’s fixed point theorem) that

corresponds to T1n in our framework and uses on the transition probability P (s, ds′) our

Assumption 3. The case considerd here is however simpler, since our expression does

not depend on s, only on s′. Apart from this, the construction in Stokey and Lucas with

Prescott (1989) differs in the details.

From (14) , all pn are strictly positive. Since {pn} ⊆ F and F is relatively compact,

{pn} must have a convergent subsequence {pnk
} . To simplify notation, we denote this

subsequence by {pk} . Let p∗ be its limit point. Note that by dominated convergence, (14)

with dn = 0 also holds for p∗, so that by our assumption that each transition probability

P (s, ·) has full support, either p∗ = 0 or p∗ is strictly positive. A strictly positive p∗ is

clearly a monetary equilibrium.

We now turn to the second step of our argument and let the dividends go to zero.

Lemma 2 Let a continuous stationary allocation be given. If the allocation is interim

Pareto inefficient there exists a monetary equilibrium associated with it.

Proof. Suppose the original stationary (autarky) allocation {cy (s) , co (s)}s∈S is in-

terim Pareto inefficient and p∗ = 0. By Theorem 2 this implies the existence of strictly

positive continuous function η such that∫
S

v′ (co (s′))

u′ (cy (s))
η (s′)P (s, ds′) > η (s) for each s ∈ S.

Since p∗ = 0, we have that ‖pk‖∞ → 0. Assume w.l.o.g. that ‖pk‖∞ ↓ 0. Observe

that
∫
S
v′(co(s′)+pk(s

′)+dk)
u′(cy(s)−pk(s))

η (s′)P (s, ds′) ≥
∫
S

v′(co(s′)+‖pk‖∞+dk)
u′(cy(s)−‖pk‖∞)

η (s′)P (s, ds′) and both are

continuous functions in s.21∫
S

v′(co(s′)+‖pk‖∞+dk)
u′(cy(s)−‖pk‖∞)

η (s′)P (s, ds′) converges monotonically to the continuous function∫
S
v′(co(s′))
u′(cy(s))

η (s′)P (s, ds′) on the compact set S. Thus by Dini’s lemma [see Theorem 2.62

in Aliprantis and Border (1999)], convergence is uniform. Further by continuity and

21Note that ‖pk‖ < cy for k sufficiently large, so that u′ (cy (s)− ‖pk‖∞) is well defined.
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compactness min
s∈S

∫
S
v′(co(s′))
u′(cy(s))

η (s′)P (s, ds′)− η (s) > 0. Thus for k sufficiently large,

∫
S

v′ (co (s′) + pk (s′) + dk)

u′ (cy (s)− pk (s))
η (s′)P (s, ds′) > η (s) for each s ∈ S. (15)

By Theorem 2, this implies that the stationary allocation {cy (s)− pk (s) , co (s) + pk (s) + dk}s∈S
is inefficient. However, an equilibrium with an asset that pays strictly positive dividends

at each date is always interim Pareto efficient (see Lemma 4). This gives a contradic-

tion to (15) and shows that we cannot have p∗ = 0 if {cy (s) , co (s)}s∈S is interim Pareto

inefficient.

We now state the much easier converse to this result, the ”if”-part of Theorem 3:

Lemma 3 Let a continuous stationary allocation be given. The allocation is interim

Pareto inefficient if a monetary equilibrium associated with it exists.

Proof. This follows from the strict concavity of the utility function and the strict

positivity of p as in the corresponding Proposition on p.282 of Manuelli (1990).

The following lemma shows that any allocation satisfying (14) and any allocation in

a monetary equilibrium is efficient. The logic behind it is similar to Proposition 4 (a) in

Barbie, Hagedorn and Kaul (2007).

Lemma 4 Any continuous stationary allocation {cy (s)− p (s) , co (s) + p (s) + d}s∈S with

d ≥ 0 such that u′ (cy (s)− p (s)) p (s) =
∫
S
v′ (co (s′) + d+ p (s′)) · (d+ p (s′))P (s, ds′)

holds is interim Pareto efficient.

Proof. Define m̃ (s, s′) := v′(co(s′)+d+p(s′))
u′(cy(s)−p(s)) . We have

∫
S
m̃ (s, s′) p (s′)P (s, ds′) ≤ p (s) .

Define λ∗ (s, s′) = m̃ (s, s′) p(s′)
p(s)

α (s) with
∫
S
λ∗ (s, s′)P (s, ds′) = 1. Clearly, α (s) ≥ 1. We

have for any path s∞

∞∑
i=0

i∏
j=0

λ∗
(
s∞j , s

∞
j+1

)
m̃
(
s∞j , s

∞
j+1

) =
∞∑
i=0

p
(
s∞i+1

)
p (s∞0 )

·
i∏

j=0

α
(
s∞j
)

=∞. (16)

For any family µ∞ ∈ U∞ =
∏

st U (st) such that µ∞ (st) ∈ U (st) for each histories

st, we have that µ∞ (st, s′) ≥ λ∗ (st, s
′) for each history st and some s′ ∈ S. Together

with (16) this implies that Proposition 1 can never hold for any µ∞ ∈ U∞, proving that

{cy (s)− p (s) , co (s) + p (s) + d}s∈S is interim Pareto efficient.
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