
Optimal tax and expenditure policy with aggregate

uncertainty

Felix Bierbrauer∗

University of Cologne, Germany

January 10, 2013

Abstract

We study optimal income taxation and public-goods provision under the as-

sumption that the cross-section distributions of productive abilities or public-goods

preferences are not known a priori. A conventional Mirrleesian treatment is shown

to provoke manipulations of the policy mechanism by individuals with similar inter-

ests. The analysis therefore incorporates a requirement of coalition-proofness. The

main result is that increased public-goods provision is associated with a more dis-

tortionary and a more redistributive tax system. With a conventional Mirrleesian

treatment, the level of public-goods provision is not related to how distortionary or

redistributive the tax system is.
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1 Introduction

This paper looks at a classical problem in normative public economics: What are the

characteristics of an optimal policy, consisting of a redistributive income tax schedule and

expenditures on public goods.

We use a very simple model that differs, however, from the previous literature in one

respect. It includes a problem of information aggregation, i.e., it is not known a priori

how productive the economy’s workforce is or what the demand for public goods looks

like. This uncertainty about the data of the economy matters in the following sense: If

we used a conventional approach to the policy problem – that is, an optimal income tax

in conjunction with a version of the Samuelson rule that takes the marginal cost of public

funds into account – then there would be scope for manipulations of the policy mechanism

by groups of like-minded individuals.

Our analysis has two parts. In the first part, we develop a mechanism design approach

that includes a set of incentive constraints which render such manipulations unattractive.

In the second part, we characterize an optimal policy that satisfies these constraints.

Our main results are as follows: First, uncertainty about the cross-section distribution of

productive abilities does not generate an incentive problem. In this case, the optimal Mir-

rleesian policy is manipulation-proof. Second, uncertainty about the demand for public

goods requires major deviations from the optimal Mirrleesian policy: If we think of, say,

the United States and Sweden, as two countries which differ only in the demand for public

goods, with a comparatively high demand for public goods in Sweden and a rather low

demand for public goods in the United States, then a conventional Mirrleesian approach

would reach the conclusion that the Swedes should have more public goods, but that

the two countries should otherwise have identical tax and transfer systems. The optimal

manipulation-proof policy, by contrast, implies, that the Swedes do not only have more

public goods, but also a more redistributive and distortionary tax and transfer system.

Moreover, relative to an optimal Mirrleesian policy, taxes, income transfers, and expen-

ditures are distorted upwards in Sweden and distorted downwards in the US.

The formal analysis is based on a large economy model with endogenous production,

as is the theory of optimal taxation, and uses a mechanism design approach.1 The econ-

omy is populated by high-skilled and by low-skilled individuals, who either have a high

or a low preference for public goods. A state of the economy is identified with a cross-

section distribution of those characteristics; that is, a state is a triplet consisting of the

population share of high-skilled individuals, the fraction of high-skilled individuals with

1The paper thus contributes to recent literature in public economics which uses a mechanism design

approach in order to characterize optimal insurance contracts or tax systems; see, for example, Golosov

et al. (2003), Kocherlakota (2005), or Bassetto and Phelan (2008). Predecessors are Hammond (1979)

and Guesnerie (1995).
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a high valuation of public goods, and the fraction of low-skilled individuals with a high

valuation of public goods. A mechanism specifies how the income tax schedule and the

public-goods provision level vary with the state of the economy; that is, how fiscal policy

responds to changes in the cross-section distribution of preferences or productive abilities.

The aim of the paper is to characterize the optimal mechanism, i.e., the optimal response

to changes in the cross-section distribution of preferences or productive abilities.

Our mechanism design approach invokes a requirement of robustness with respect to

the specification of the individuals’ probabilistic beliefs.2 As has been shown in Bierbrauer

(2009a), robust mechanism design in a large economy yields a framework that is equivalent

to a Mirrleesian model of income taxation and public-goods provision.3 The contribution

of the present paper is to introduce, in addition, a requirement of coalition-proofness. This

requirement is motivated by the observation that the Mirrleesian model is vulnerable to

collective manipulations by like-minded individuals. We show that any mechanism which

implements the Mirrleesian outcome has alternative equilibria with the property that

individuals have an incentive to lie about their public-goods preferences. Either the high-

skilled individuals have an incentive to exaggerate their public-goods preferences or the

low-skilled individuals have an incentive to understate theirs. The reason is that low-

skilled individuals suffer more from the need to pay for the public good because they have

a harder time generating income. Since a utilitarian policy maker does not give full weight

to the utility loss of the low-skilled, these individuals have an incentive to lie about their

public-goods preferences so as to convince the policy maker that the provision level should

be reduced. A symmetric argument explains why the high-skilled have an incentive to

exaggerate their preferences.4

This problem arises because the implementability of the Mirrleesian outcome rests on

the assumption that individuals behave truthfully simply because, in a large economy, a

unilateral change of behavior would neither make a difference for the public-goods pro-

vision level, nor, for the income tax schedule. However, individuals are not indifferent

regarding the policy that is implemented. Hence, from a theoretical perspective, if in-

dividuals can coordinate on an alternative equilibrium that is more attractive to them,

it is unconvincing to assume that the truthful equilibrium will be played. Also, from an

empirical point of view, if one thinks about political parties and special interest groups,

it is plausible that individuals with common interests manage to induce policies that are

2This notion of robustness has been introduced by Bergemann and Morris (2005) in an attempt to

reduce the reliance on specific common prior assumptions in the theory of mechanism design.
3To the best of my knowledge, an analysis of a Mirrleesian economy with aggregate uncertainty based

on the solution concept of an interim Nash equilibrium has not yet been undertaken.
4This may seem counterintuitive because, in the political discourse, its seems that those who represent

the low-skilled push for a larger public sector. However, often this is done for redistributive reasons and

concerns the public provision of private goods, such as health care or education as opposed to the public

provision of public goods, such as infrastructure or national defense.
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favorable to them.

To address this concern, this paper uses the notion of coalition-proof implementation

in a large economy, which has been developed in Bierbrauer and Hellwig (2010). In

this approach, individuals are given the possibility to coordinate their communication

with the policy-maker so as to take advantage of the possibility that, if sufficiently many

individuals lie about their characteristics, this affects the policy maker’s perception of the

state of the economy and hence the policy that is ultimately chosen. Coalition-proofness

fails if there is an alternative equilibrium in which a group of individuals lies about their

characteristics, and, moreover, benefits from the change in the policy that is induced by

this deviation.5

Bierbrauer and Hellwig (2010) study the provision of an indivisible public good which is

either provided or not. Moreover, individuals differ only in their public-goods preferences.

The present paper extends this analysis in various directions. Individuals now differ both

in public-goods preferences and in productive abilities. Moreover, the distribution of

public-goods preferences or the distribution of productive abilities are a priori unknown.

The public-goods provision level can be continuously adjusted, and, finally, production is

endogenous. In particular, these extensions make it possible to study the interdependence

of optimal tax and expenditure policies.6

The main part of the analysis is concerned with the characterization of an optimal rule

for income taxation and public-goods provision that is both robust and coalition-proof.

This yields the following main results. First, there is a fundamental difference between the

implications of uncertainty about the cross-section distribution of preferences for public

goods on the one hand, and uncertainty about the cross-section distribution of produc-

tive abilities on the other: while the assumption that the ability distribution is a priori

unknown has no bearing on the set of admissible policies, the assumption of an unknown

distribution of public-goods preferences leads to a new set of collective incentive con-

straints. Lies about productive abilities can be deterred by minor adjustments of the

income tax schedule, which ensure that a truthful communication of abilities is each indi-

vidual’s unique best response. Lies about public-goods preferences cannot be addressed

in this way. Since the economy is large, so that no individual is pivotal for how much of a

5This approach has been inspired by the work of Laffont and Martimort (1997, 2000) who treat the

formation of a deviating coalition as a mechanism design problem with its own set of incentive and

participation constraints.
6Several companion papers have also looked at this problem, albeit in more specific setups and with

different solution concepts. Bierbrauer and Sahm (2010) focus on the aggregation of public-goods prefer-

ences via voting procedures. In addition, it is assumed that the cross-section distribution of public-goods

preferences among the high-skilled and the low-skilled individuals is identical. Bierbrauer (2009b) also

studies optimal non-linear income taxation and public-goods provision, but does not contain a rigorous

foundation in terms of mechanism design theory, and, moreover, severely restricts the set of possible

states of the economy. Bierbrauer (2011) looks at the communication of public-goods preferences under

the assumption that a Ramsey tax system is used to finance public-goods provision.
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public good is provided, it is impossible to provide incentives for a truthful communication

of preferences. Hence, the policy rule has to deter these lies by making their consequences

unattractive. This gives rise to an additional set of constraints.

Second, we characterize the optimal mechanism that satisfies these collective incentive

constraints, and compare it to the optimal Mirrleesian policy. The main difference between

these policies is how an increased demand for public goods affects the structure of the

income tax system. If the number of people who value public goods highly goes up, then,

under the Mirrleesian policy, the public-goods provision level goes up, but the tax policy

remains unaffected. With coalition-proofness, by contrast, an increase in the demand for

public goods goes together with an increase of direct income transfers from rich to poor

individuals, and with an increase of marginal income tax rates. The intuition for these

results is as follows: Suppose the Mirrleesian policy faces the problem that low-skilled

people do not admit a high public-goods preference because they suffer too much from

having to pay for the public good. Now, to fix this problem, an increase in the public-

goods provision level has to be made more appealing to the low-skilled. This is achieved

by promising them additional redistribution whenever the public-goods provision level

goes up. To generate more utility for the low-skilled, direct income transfers have to

be increased. This in turn makes it necessary to have a more distortionary income tax

system.

Related literature. It has long been recognized in public economic theory that a soci-

ety that wants to provide public goods and redistribute income faces a number of informa-

tion problems. Given that taxes paid and transfers received should reflect an individual’s

ability to generate income, each individual’s earning ability has to be determined. In ad-

dition, information on preferences for public goods has to be acquired, because an optimal

public expenditure policy requires an assessment of the social costs and benefits of public

spending. However, there is no unified treatment of these problems.

The theory of optimal taxation in the tradition of Mirrlees (1971) focuses on the

problem of taxing individuals according to their earning ability. The optimal policy is

therefore the solution of a screening problem, i.e., for any one individual the problem is to

determine this individual’s characteristics so that the individual can be taxed accordingly.

In this literature, problems of information aggregation do not arise; e.g., there is no issue

of having to acquire the information on how many individuals have a high earning ability.

Also, for extended versions of this model that include a decision on public-goods provision,

there is no need to acquire the information on how many individuals value a public good

highly.7

The theory of public-goods provision in the tradition of Clarke (1971) and Groves

(1973), by contrast, focuses on problems of information aggregation. In this literature,

7See, for example, Boadway and Keen (1993), Gahvari (2006), or Kreiner and Verdelin (2010).
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information on the public-goods preferences of any one individual has to be acquired

because it is an essential input for the determination of the social benefits from public-

goods provision. This literature, however, disregards the production side of the economy

and the tax system as an alternative source of public-goods finance. Also, it does not

include distributive considerations which are based on individual differences in productive

abilities.

This paper provides a unified approach to these issues so that we can simultaneously

analyze problems of optimal taxation and problems of information aggregation. This

makes it possible to provide answers to the following questions: should the tax system

become more redistributive if the average worker becomes more productive? What does

this imply for public-goods provision? Should public spending expand if the demand for

public goods goes up? If so, what are the implications for the shape of the tax system?

The remainder of the paper is organized as follows: Section 2 describes the economic

environment. As a benchmark, Section 3 reviews the Mirrleesian approach to income tax-

ation and public goods provision and relates it to a model of robust mechanism design.

In Section 4 it is shown that the Mirrleesian outcome provokes collective deviations. In

Section 5, we introduce the solution concept of a robust and coalition-proof interim Nash

equilibrium. The optimal robust and coalition-proof mechanism for income taxation and

public-goods provision is characterized in Section 6. The last section contains conclud-

ing remarks. All proofs are in the Appendix. The formal analysis repeatedly refers to

results that can be found in Bierbrauer and Boyer (2010), a note which contains, for a

simple model of non-linear income taxation, a complete analytical characterization of all

Pareto-efficient tax schedules.

2 The Environment

Payoffs and social choice functions. There is a continuum of individuals identified

with the unit interval I = [0, 1]. Individual i’s utility function is given by

U(q, c, y, ωi, θi) = θiq + u(c)− y

ωi
,

where q is the amount of a public good, c is the individual’s consumption of a private good,

and y is the individual’s contribution to the economy’s output. Individual i’s utility from

the public good depends on a preference parameter θi, which either takes a high or a low

value; for all i, θi ∈ Θ = {θL, θH}, where 0 < θL < θH . The function u gives utility from

private-goods consumption and is assumed to be strictly increasing and strictly concave.

Moreover, it satisfies the Inada conditions so that limc→0 u
′(c) =∞ and limc→∞ u

′(c) = 0.

The disutility from productive effort depends on a skill parameter ωi, which, again, takes

either a high or a low value; for all i, ωi ∈ Ω = {ωL, ωH}, where 0 < ωL < ωH . Individuals
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are privately informed about their public-goods preference and about their skill level. To

simplify the exposition, we assume that θL = ωL and that θH = ωH .

A state of the economy is identified with a cross-section distribution of productivity

and preference parameters. Formally, a state s of the economy is a triple s = (fH , pH , pL),

where fH is the population share of individuals with high productivity, pH is the fraction

of high-skilled individuals with a high valuation of the public good, and pL is the fraction

of low-skilled individuals with a high valuation of the public good. The set of states is in

the following denoted by S = [0, 1]3.

Aggregate uncertainty arises if the state of the economy is a priori unknown. In the

following, we will occasionally limit the analysis to a subset of S in order to disentangle the

implications of aggregate uncertainty that arises because the skill distribution is unknown

from the implications of aggregate uncertainty that arises because the demand for public

goods is unknown.8 For instance, to isolate the implications of an unknown distribution of

productivity parameters, it is convenient to assume that pL and pH are known quantities,

so that different states are only distinguished by the population share of high-skilled

individuals. Similarly, if we want to focus on the implications of uncertainty about the

distribution of public-goods preferences among the low-skilled, we will treat pH and fH

as given parameters and pL as unknown, etc. Finally, we restrict ourselves to states with

the property that ωL

ωH
≥ fH . This assumption simplifies the exposition. It implies that,

for the optimization problems studied below, non-negativity constraints on consumption

levels can be safely ignored.9

A social choice function formalizes the dependence of outcomes on the state of the

economy. It consists of a provision rule for the public good q : S 7→ R+ that specifies

for each state how much of the public good is provided. It also specifies an individ-

ual’s private-goods consumption and output requirement as a function of the state of the

economy and the individual’s characteristics. Private-goods consumption is determined

by the function c : S × Ω × Θ 7→ R+, and the output requirement is determined by

y : S × Ω×Θ 7→ R+.

The resource requirement of public-goods provision is captured by an increasing and

convex cost function r which satisfies limq→0 r
′(q) = 0 and limq→∞ r

′(q) = ∞. A social

8Specifically, we will proceed in this way in Section 6 which deals with the characterization of optimal

social choice functions. For the results in earlier sections, the set of states is taken to be [0, 1]3.
9For the given environment, Bierbrauer and Boyer (2010) provide a complete analytical characteriza-

tion of the set of Pareto-efficient income tax schedules. It follows from their analysis – particularly, from

arguments in the proof of Proposition 1 – that non-negativity constraints on consumption levels can be

safely ignored, for every Pareto-efficient income tax schedule, if ωL

ωH
≥ fH .
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choice function is said to be feasible, if, for every s,

fH

(
pH(y(s, ωH , θH)− c(s, ωH , θH)) + (1− pH)(y(s, ωH , θL)− c(s, ωH , θL))

)
+(1− fH)

(
pL(y(s, ωL, θH)− c(s, ωL, θH)) + (1− pL)(y(s, ωL, θL)− c(s, ωL, θL))

)
≥ r(q(s)) .

(1)

Types and beliefs. The analysis below focuses on social choice functions that are

robustly implementable in the sense that their implementability does not rely on assump-

tions about the individuals’ probabilistic beliefs. This notion of robustness is formally

defined below. As a preliminary step, we introduce the notion of a type space, which we

borrow from Bergemann and Morris (2005). This makes it possible to view an individ-

ual’s type as a two-dimensional object, consisting of a payoff type affecting the individuals’

preferences, and a belief type. Intuitively, an agent views the cross-section distributions of

payoff types, as well as the beliefs of other agents about the cross-section distribution of

payoff types (and also their higher order beliefs) as a random quantity. The agent’s belief

type is identified with a probability distribution of this random quantity.

Formally, a type space consists of a measurable space (T, T ), a measurable and surjec-

tive map π from T into Ω×Θ, and a measurable map β from T into the space ∆(∆(T ))

of probability distributions over measures on T , denoted by β. The interpretation is as

follows: There is a set of abstract types T . Now suppose that agent i has some abstract

type ti ∈ T . The function π determines the preference and the productivity parameter

that enter agent i’s payoff function. We therefore refer to π(ti) ∈ Ω × Θ also as agent

i’s payoff type. The belief type β(ti) indicates the agent’s probabilistic beliefs about the

cross-section distribution of abstract types. Let ∆(T ) be the set of possible cross-section

distributions of types. Then, for any X ⊂ ∆(T ), β(X | ti) is the probability that type

ti of agent i assigns to the event that the cross-section distribution of types belongs to

the subset X of ∆(T ).10 We refer to the map β : T → ∆(∆(T )) as the belief system of

the economy. A given belief system specifies, in particular, an individual’s beliefs about

the payoff types of other individuals. To see this, note that each δ ∈ ∆(T ) induces a

cross-section distribution of payoff types s(δ) := δ ◦ π−1.

We assume that the measures β(t), t ∈ T, are mutually absolutely continuous, i.e., that

they all have the same null sets. We refer to this property by saying that the belief system

is moderately uninformative. If the belief system is moderately uninformative, type ti of

agent i cannot rule out any event that has positive probability from the perspective of some

other type t̄i 6= ti.11 A particular example of a moderately uninformative belief system is

10Observe that the set of possible belief types is the set of probability distribution over the set of

possible cross-section distributions of types, ∆(∆(T )).
11The absolute continuity assumption does not presuppose a common prior. For a discussion of moder-

ately uninformative belief systems under a common prior assumption, see Bierbrauer and Hellwig (2010).
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a “complete information type space”, where all individuals “know” (assign probability 1

to) the true state and assign probability 0 to all other states.

Mechanisms and robust implementation. We seek to implement a social choice

function by means of an allocation mechanism M = [(A,A), Q, C, Y ], where (A,A) is a

measurable space, and A is the set of actions that individuals can take.12 The function

Q : ∆(A)→ R+ gives the public-goods provision level as a function of the cross-sectional

distribution of actions, and the functions C : ∆(A)× A → R+ and Y : ∆(A)× A → R+

specify a consumption level C and an output requirement Y , respectively, as a function of

an individual’s message and of the cross-section distribution of messages. (Throughout,

the capital letters Q,C, and Y refer to the outcome functions of a mechanism, and the

small letters q, c and y refer to the different components of a social choice function.)

The mechanisms that we consider are anonymous in the sense that the decision on

public-goods provision depends only on the cross-section distribution of actions that the

mechanism designer receives. Also, an individual’s consumption level and output require-

ment depend on the own action and, again, the distribution of actions. Since the economy

is large, a single individual cannot affect the distribution of actions that the mechanism

designer receives. In particular, this implies that no single individual can influence the

public-goods provision level, or the consumption levels and output requirements of other

individuals.

A mechanism induces a game. In the following section, as a benchmark, we focus

on interim Nash equilibria. (The additional requirement of coalition-proofness will be

introduced in Section 4.) With this solution concept, a social choice function is said to be

implementable on a given type space if, for this type space, there exists a mechanism M ,

and an interim Nash equilibrium so that the equilibrium outcome is equal to the outcome

stipulated by the social choice function. It is robustly implementable if, for every (T, T ),

and π : T → Ω × Θ, there exists a mechanism that implements it on the type space

[(T, T ), π, β], for every moderately uninformative belief system β.13

12We do not (yet) restrict attention to direct mechanism and to truthtelling equilibria because, for

the coalition-proof interim Nash equilibria that will be studied below, the revelation principle does not

generally hold.
13Our notion of robustness is slightly stronger than that of Bergemann and Morris (2005). Following

Ledyard (1978), we require that the same mechanism is used whatever the belief system is. In contrast,

Bergemann and Morris allow mechanisms to depend on the belief system. While this has no bearing

on the set of robustly implementable social choice functions, it matters for the formulation of a robust

mechanism design problem.
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3 A Mirrleesian approach

As a benchmark, we characterize the social choice functions that are robustly imple-

mentable as an interim Nash equilibrium. In particular, we show that the problem of

choosing an optimal robust social choice function is equivalent to a Mirrleesian problem

of optimal income taxation and public-goods provision. We will then demonstrate in sub-

sequent sections that the optimal Mirrleesian policy provokes manipulations of the policy

outcome by like-minded individuals.

Proposition 1 The following statements are equivalent.

(a) A social choice function (q, c, y) is robustly implementable as an interim Nash equi-

librium.

(b) A social choice function (q, c, y) satisfies the following individual incentive compati-

bility constraints: For every s ∈ S, every (ω, θ) ∈ Ω×Θ, and every (ω̂, θ̂) ∈ Ω×Θ,

θq(s) + u(c(s, ω, θ))− y(s, ω, θ)

ω
≥ θq(s) + u(c(s, ω̂, θ̂))− y(s, ω̂, θ̂)

ω
. (2)

Proposition 1 adapts arguments by Ledyard (1978) and Bergemann and Morris (2005) to

the given large economy setup. The individual incentive compatibility constraints can be

interpreted as follows: a truthful revelation of types must be an ex post equilibrium; i.e.,

once the state of the economy has been revealed, no individual regrets having reported

his characteristics truthfully to the mechanism designer.

The incentive compatibility constraints in (2) can be equivalently written as follows:

for every s ∈ S and every (ω, θ) ∈ Ω×Θ,

u(c(s, ω, θ))− y(s, ω, θ)

ω
≥ u(c(s, ω̂, θ̂))− y(s, ω̂, θ̂)

ω
, (3)

for all (ω̂, θ̂) ∈ Ω×Θ. The utility that individuals derive from public goods does not matter

for incentive compatibility because (i) the economy is large, and (ii) the utility function

is separable so that an individual’ s marginal rate of substitution between consumption c

and output y does not depend on the supply of public goods.

The inequalities in (3) imply that, for every s, for every given ω and every pair θ and

θ̂,

u(c(s, ω, θ))− y(s, ω, θ)

ω
= u(c(s, ω, θ̂))− y(s, ω, θ̂)

ω
, (4)

so that two individuals who differ only in their valuation of public goods derive the same

utility from their respective (c, y) combination, in every state s. Given condition (4), it

is without loss of generality to assume that also c(s, ω, θ) = c(s, ω, θ̂) and y(s, ω, θ) =

9



y(s, ω, θ̂), for every s, ω, and every pair (θ, θ̂).14 In the following, we may hence drop the

dependence of consumption levels and output requirements on public-goods preferences

and write simply c(s, ω) and y(s, ω), respectively. With this notation, we can write the

individual incentive compatibility constraints as follows: for every s, every ω, and every

ω̂,

u(c(s, ω))− y(s, ω)

ω
≥ u(c(s, ω̂))− y(s, ω̂)

ω
. (5)

The economy’s resource constraint in (1) can now be written as follows: For all s =

(fH , pH , pL),

fH(y(s, ωH)− c(s, ωH)) + (1− fH)(y(s, ωL)− c(s, ωL)) ≥ r(q(s)) . (6)

Social choice functions and income tax schedules. It has become common prac-

tice to use a mechanism design approach for the analysis of the Mirrleesian income tax

problem; that is, instead of assuming that individuals are confronted with an income tax

schedule τ : y 7→ τ(y) that relates their pre-tax-income, y, to their after-tax-income, c,

and then choose y and c in a utility-maximizing way, one looks directly at the social choice

functions that permit a decentralization via some income tax schedule.15 This yields im-

plementability conditions that, for a given s, coincide with the constraints in (6) and (5).

Hence, finding an optimal robustly implementable social choice function is equivalent to

the Mirrleesian problem of optimal income taxation.

Total tax payments and marginal income tax rates in state s are then implicitly defined

in the following way: The difference between an individual’s contribution to the economy’s

output and his private goods consumption is the individual’s tax payment. Hence, in state

s, the tax payment of a type k-individual is given by y(s, ωk)− c(s, ωk). We will also be

interested in the tax payments net of the revenue requirement r(q(s)), which are defined

by

nk(s) := y(s, ωk)− c(s, ωk)− r(q(s)) .

The net tax payments are a measure of how redistributive the income tax system is.16

Marginal income tax rates, by contrast, are a measure of how distortionary the tax

system is. They are defined as the difference between an individual’s marginal rate of

14Any welfare-maximizing social choice function is such that individual utility levels are generated at

a minimal resource cost. Hence it must be true that y(s, ω, θ) − c(s, ω, θ) = y(s, ω, θ̂) − c(s, ω, θ̂). This

equality in conjunction with the fact that indifference curves in a y − c diagram are strictly increasing

and strictly convex, yields c(s, ω, θ) = c(s, ω, θ̂) and y(s, ω, θ) = y(s, ω, θ̂).
15Examples are Stiglitz (1982), Boadway and Keen (1993), Gahvari (2006), or Hellwig (2007).
16To see this, note that the resource constraints can be written as follows: For every s = (fH , pH , pL)

it has to be the case that fHnH(s) + (1 − fH)nL(s) ≥ 0. With an optimal policy this constraint is

binding for every s, so that nH(s) can be interpreted as the direct income transfer that each high-skilled

individual has to finance, and nL(s) is the direct income transfer that each low-skilled individual receives.
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transformation between output y and consumption c, which equals 1 for each individual,

and the individual’s marginal rate of substitution, 1
ωu′(c)

.17 Hence, in state s, the marginal

tax rate for a type k-individual is given by

τ ′k(s) := 1− 1

ωku′(c(s, ωk))
.

The optimal Mirrleesian policy. An optimal utilitarian social choice function solves

the following maximization problem: choose q : S → R+, c : S×Ω→ R+ and y : S×Ω→
R+ in order to maximize expected utilitarian welfare E[W (s)], where W (s) is utilitarian

welfare in state s, subject to the the constraints in (6) and (5).18 However, since there

is no constraint that links the outcomes for different states, we may assume, without

loss of generality, that each state s gives rise to its own optimization problem, without

repercussions for the outcomes in other states. Formally, for every s, q(s), c(s, ωL),

y(s, ωL), c(s, ωH) and y(s, ωH) are chosen in order to maximize

W (s) = θ̄(s)q(s) + fH

(
u(c(s, ωH))− y(s,ωH)

ωH

)
+ (1− fH)

(
u(c(s, ωL))− y(s,ωL)

ωL

)
,

where

θ̄(s) = (fHpH + (1− fH)pL)θH + (fH(1− pH) + (1− fH)(1− pL))θL

is the population average of the preference for public-goods provision in state s. As is

well-known,19 the solution to this problem is such that the incentive constraint for the

high-skilled individuals is binding,

u(c(s, ωH))− y(s, ωH)

ωH
= u(c(s, ωL))− y(s, ωL)

ωH
, (7)

and the incentive constraint of the low-skilled individuals is slack,

u(c(s, ωL))− y(s, ωL)

ωL
> u(c(s, ωH))− y(s, ωH)

ωL
.

Intuitively, the reason is that the utilitarian mechanism designer wants to allocate the

same consumption to high-skilled and low-skilled individuals so as to equate their marginal

utilities of consumption. At the same time, he wants to have as much output as possible

generated by the high-skilled, because their marginal effort cost is smaller. Hence, unless

the high-skilled individuals’ incentive constraint is binding, W (s) can be increased by

lowering y(s, ωL) and increasing y(s, ωH), so that aggregate output remains unchanged.

The resource constraint is also binding,

fH(y(s, ωH)− c(s, ωH)) + (1− fH)(y(s, ωL)− c(s, ωL)) = r(q(s)) . (8)

17This is based on the first-order condition of the utility maximization problem that individuals face

when confronted with an income tax schedule τ : choose c and y in order to maximize u(c) − y
ω subject

to the constraint c = y − τ(y). The first order condition is τ ′(y) = 1− 1
ωu′(c) .

18Expectations are taken with respect to the policy maker’s subjective beliefs.
19A formal proof can be found in Weymark (1986) or Hellwig (2007).
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Otherwise y(s, ωL) and y(s, ωH) could both be decreased in a way that maintains incentive

compatibility. Knowing that these constraints are binding, we can use a Lagrangean ap-

proach to characterize the optimal choices of q(s), c(s, ωL), y(s, ωL), c(s, ωH) and y(s, ωH).

The results from this exercise are summarized in the following proposition, which we state

without proof.

Proposition 2 For every s, the values of q(s), c(s, ωL), y(s, ωL), c(s, ωH) and y(s, ωH),

which maximize W (s) subject to the constraints in (7) and (8), are characterized by the

following system of equations:

i) The optimal consumption levels satisfy

u′(c∗(s, ωH)) = 1
ωH

and u′(c∗(s, ωL)) = 1
ωL

1−fH
ωH−ωL

ωH

1−fH
ωH−ωL

ωL

.

ii) Let λ(s) := fH
ωH

+ 1−fH
ωH

.20 The optimal public-goods provision level satisfies the

Samuelson rule, θ̄(s) = λ(s)r′(q∗(s)).

iii) The optimal output requirements satisfy

y∗(s, ωH) = e∗(s) + (1− fH)ωH(u(c∗(s, ωH))− u(c∗(s, ωL))) and

y∗(s, ωL) = e∗(s)− fHωH(u(c∗(s, ωH))− u(c∗(s, ωL))) ,

where e∗(s) := fHc
∗(s, ωH) + (1 − fH)c∗(s, ωL) + r(q∗(s)) denotes aggregate expen-

ditures on public and private goods in state s.

Proposition 2 makes it possible to analyze how a change in the distribution of productivity

or preference parameters affects the optimal policy. This comparative statics exercise is

facilitated by the assumptions that preferences are additively separable and that the

individuals’ effort costs are linear. Moreover, the simple characterization of the optimal

public-goods provision level is possible because an individual’s willingness to work harder

in exchange for increased private goods consumption does not depend on the supply

of public goods. As shown in Boadway and Keen (1993), this rules out any reason to

deviate from public-goods provision according to the Samuelson rule. With non-separable

preferences such deviations could be attractive as a means of relaxing the burden of

binding incentive constraints.

Figure 1 illustrates such a comparative statics exercise.21 The population share of the

high-skilled is fixed at fH = 1
2
, and the fraction of the high-skilled with a high-valuation

of the public good is also fixed at pH = 1
2
. The curves in the figures show, respectively,

20It can be shown that marginal cost of public funds in state s is given by λ(s).
21The figures are based specific functional forms, namely u(c) =

√
c and r(q) = 1

2q
2.
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what happens with the low-skilled individuals’ marginal income tax rate τ ′L(s), their net

tax payment nL(s), and the public-goods provision level q as the share of the low-skilled

individuals with a high valuation of the public good is continuously increased from pL = 0

to pL = 1. The figure illustrates that the public-goods provision level goes up as the

number of low-skilled individuals who value the public good highly increases. In addition,

the income tax system is unaffected by such a preference shock. Neither the marginal tax

rate of the low-skilled individuals, nor their transfer income changes as their demand for

public goods goes up.22

Insert Figure 1 here

Figure 1 documents the results of a particular comparative statics exercise, namely a

change in the cross-section distribution of preferences for the public good among the low-

skilled. A similar exercise can be undertaken with respect to changes of the cross-section

distribution of the productivity parameter, i.e., a change of fH , while pL and pH remain

constant. Figure 2 documents the results of such an exercise. It shows how the optimal

policy changes as the population share of the high-skilled individuals is increased from

fH = 1
3

to fH = 2
3
. It is assumed throughout that pL = 3

4
and that pH = 1

2
.

Insert Figure 2 here

The curves show how, under the optimal Mirrleesian policy, characterized in Proposi-

tion 2, the public-goods provision level q, the low-skilled individuals’ marginal income tax

rate τ ′L(s), and their net tax payment nL(s) respond to such a productivity shock. As the

average worker becomes more productive, the public goods provision level goes up and

the tax system becomes more distortionary as reflected by the increase of the low-skilled

individuals’ marginal income tax rates. Proposition 2 implies that the high-skilled indi-

viduals’ marginal income tax rate stays constant at a level of zero. Also, the net transfer

that a low-skilled individual receives goes up. In this sense, the tax system becomes

also more redistributive. It can also be shown that each high-skilled individual’s net tax

payment goes down. Hence, the reduced number of low-skilled individuals dominates the

effect that each low-skilled individual receives a higher transfer.

Implementation. So far, we have assumed that an abstract mechanismM = [(A,A), Q, C, Y ]

is used to implement a social choice function (q, c, y). In a conventional Mirrleesian model

of income taxation and pubic-goods provision, the state s of the economy is known, and

the implementation of the optimal allocation via some income tax schedule Ts is straight-

forward. This observation extends to the present setting in which s is a priori unknown.

22Proposition 2 and the definition of marginal income taxes imply that the marginal income tax rate

for the high-skilled is zero, for every s. This property is often referred to as no distortion at the top.

Hence, also the high-skilled individuals’ marginal tax rate remains unaffected.
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However, individuals first have to send messages that enable the mechanism designer to

learn what the state of the economy is, and what income tax schedule from the set of

income tax schedules {Ts}s∈S has to be used.

4 Robust social choice functions are manipulable

In the following, we discuss two examples in order to question that the Mirrleesian in-

centive compatibility constraints in (5) suffice to make sure that a social choice function

can be implemented. Specifically, we will argue that with such social choice functions

individuals may have an incentive to coordinate their behavior in such a way that the

optimal policy is manipulated.

Example 1: Public-goods preferences. With an optimal Mirrleesian policy as char-

acterized in Proposition 2, an increase of the revenue requirement r by some ε > 0 implies

that all individuals in the economy have to increase their output by ε, while their con-

sumption levels remain unaffected. For a low-skilled individual, this implies a utility loss

of ε
ωL

, whereas the utility loss for the high-skilled individual equals only ε
ωH

. Ceteris

paribus, this implies that public-goods provision is less attractive from the perspective

of the low-skilled. This may give them an incentive to understate their public-goods

preferences collectively. (A symmetric example can be constructed in which high-skilled

individuals exaggerate their public-goods preferences.)

To articulate this concern more formally, we find it useful to define the indirect utility

function V ∗ : S × Ω×Θ→ R, with

V ∗(s, ω, θ) = θq∗(s) + u(c∗(s, ω, θ))− y∗(s, ω, θ)

ω
,

where (q∗, c∗, y∗) is the social choice function characterized in Proposition 2.

Now consider a low-skilled individual with a high valuation of public goods; i.e., ω = ωL

and θ = θH . Recall that any state s can be written as s = (fH , pH , pL). One easily derives

that,

∂V ∗(fH ,pH ,pL,ωL,θH)
∂pL

= (θHωL − r′(q∗(fH , pH , pL))) 1
ωL

∂q∗(fH ,pH ,pL)
∂pL

=
(
θHωL − θ̄(fH ,pH ,pL)

λ(fH ,pH ,pL)

)
1
ωL

∂q∗(fH ,pH ,pL)
∂pL

.
(9)

Also, for the sake of the argument, suppose that the type space under consideration is

such that this individual’s beliefs assign a lot of probability mass to states s such that

both pH and pL are high; i.e., the individual believes that most other individuals also

have a high valuation of public goods. This implies that θ̄(fH , pH , pL) is close to θH so

that ∂V ∗(fH ,pH ,pL,ωL,θH)
∂pL

is close to

θH

(
ωL −

1

λ(fH , pH , pL)

)
1

ωL

∂q∗(fH , pH , pL)

∂pL
.
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Since, for all s, ωL <
1

λ(fH ,pH ,pL)
, and ∂q∗(fH ,pH ,pL)

∂pL
> 0, this implies that

∂V ∗(fH , pH , pL, ωL, θH)

∂pL
< 0 .

This situation is illustrated in Figure 3. Assuming a quadratic cost function, the

provision level q∗(s) = q∗(fH , pH , pL) is, given fH and pH , a linearly increasing function

of the fraction of low-skilled individuals with a high public-goods preference, pL. The

indirect utility function of these individuals is, however, increasing in pL only if pL is low

and is decreasing if pL is high. Hence, if these individuals think that it is likely that they

will find themselves on the downward-sloping part of their indirect utility function, they

would be happy if they could make the mechanism designer believe that pL was lower

than it actually is. Moreover, if many of them falsely communicated a low valuation of

public goods, the mechanism designer would perceive pL to be lower than it actually is

and reduce the provision level. Finally, note that such lies are perfectly in line with the

incentives at the individual level: It is an implication of individual incentive-compatibility

(recall equation (4)) that neither an individual’s consumption level c nor his productive

effort y depend on public-goods preferences. Consequently, lying is a best response.

Insert Figure 3 here

Example 2: Productive Abilities. We can also question whether it is generally

possible to acquire information on the fraction of high-skilled individuals, fH . To demon-

strate this, we consider a simplified version of our model without public goods. Sup-

pose that we seek to implement a social choice function with the following proper-

ties: for all states, there is a binding incentive compatibility constraint so that high-

skilled individuals are indifferent between the bundles z(s, ωL) := (c(s, ωL), y(s, ωL)) and

z(s, ωH) := (c(s, ωH), y(s, ωH)), and there is redistribution from the high-skilled to the

low-skilled, y(s, ωH) − c(s, ωH) > 0 and y(s, ωL) − c(s, ωL) < 0. Moreover, suppose that

the level of redistribution varies across states; it is large whenever the economy is “rich”,

in the sense that most workers are high-skilled (fH > 1
2
), and it is small otherwise. This

is illustrated by Figure 4. In this Figure, IL is the relevant indifference curve of the

low-skilled, and IH is the one of the high-skilled individuals.

Insert Figure 4 here

Does it make sense to assume that high-skilled individuals are communicating their

skill level truthfully to the mechanism designer? The “rich states” involve more redis-

tribution than the “poor states” so that the high-skilled individuals are better off in the

latter. Moreover, for every s, the incentive constraint of the high-skilled is binding, so

that the high-skilled are giving a best response if they lie about their skill level. These

individuals could therefore be inclined to lie about their skill level so as to convince the
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mechanism designer that there are only few high-skilled individuals in the population and

that it is therefore optimal to have only a moderate level of redistribution.

The implementability of the optimal Mirrleesian policy, characterized in Proposition 2, is

based on the assumption that individuals do not lie about their characteristics, because,

in a large economy, they cannot affect the outcome anyway. We consider this way of

breaking the individual’s indifference in favor of truth-telling to be unconvincing. If all

like-minded individuals – e.g., all individuals with a low skill level and a high valuation

of public goods in Example 1 – coordinated their behavior, they could affect the outcome

in a way that makes all of them strictly better off, without violating the postulate that

each individual’s action is a best response to the actions chosen by all other individuals.

To articulate this concern more formally, we will introduce a notion of coalition-proofness

in the following section.

5 Robust and coalition-proof social choice functions

In this section, we develop the notion of a robust and coalition-proof social choice func-

tion and state necessary and sufficient conditions that characterize such a social choice

function. A main result of this section will be that preference and productivity shocks

have very different implications: the possibility of preference shocks indeed gives rise to

an additional set of collective incentive constraints that a social choice function has to

fulfill. By contrast, productivity shocks do not give rise to such constraints. Hence, a

mechanism designer has to provide appropriate incentives in order to learn pH and pL,

while he gets the information on fH for free.

As a first step, however, we define formally what it means that the game induced

by a mechanism M = [(A,A), Q, C, Y ] has a coalition-proof equilibrium. We will then

introduce the requirement of robustness, and provide a characterization of robust and

coalition-proof social choice functions.

5.1 Coalition-proof interim Nash equilibrium

Consider an individual with payoff type (ω, θ) and a mechanism M = [(A,A), Q, C, Y ]. If

this individual chooses an action a and if the cross-section distribution of actions equals

α, then the resulting payoff for this individual is given by

ũM(α, a, ω, θ) := θQ(α) + u(C(α, a))− Y (α, a)

ω
.

To be able to state the individual’s expected payoff in a concise way, we introduce some

notation: A (mixed) strategy in the game induced by M is a function σ : T → ∆(A) that

specifies a probability distribution over actions for each type of individual. Put differently,
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the action chosen by individual i is a random variable a(ti). The probability, conditional

on an individual’s type being equal to t, that a(t) takes values in subset A′ of A is in the

following denoted by σ(A′ | t).
Now, if almost all individuals follow a strategy σ and the cross-section distribution of

types is given by δ, this induces a cross-section distribution of actions that is given by

α(δ, σ). We assume that a law of large numbers for large economies holds, so that we can

interpret σ(A′ | t) both as the probability that the action chosen by a type t individual

belongs to a subset A′ of A, and as the fraction of type t individuals who choose an action

in A′.23 Consequently, for a given δ, we can treat α(δ, σ) as a non-random quantity.

The expected payoff of a type t individual from behaving according to a mixed strategy

χ ∈ ∆(A), if almost all other individuals behave according to σ, can now be written as

ŨM(σ, χ, t) :=

∫
∆(T )

∫
A

ũM(α(δ, σ), a, ω(t), θ(t)) dχ(a) dβ(δ | t) .

Definition 1 Given a mechanism M and a type space [(T, T ), π, β], a strategy σ∗ : T →
∆(A) is said to be a coalition-proof interim Nash equilibrium if it is an interim Nash

equilibrium, and there is no set of types T ′ ⊆ T who can deviate to a strategy σ′T ′ : T ′ →
∆(A) so that the following conditions are fulfilled:

(a) The strategy profile (σ∗T\T ′ , σ
′
T ′), where σ∗T\T ′ is the restriction of σ∗ to types not in

T ′, is an interim Nash equilibrium.

(b) Deviators are made better off: the outcome that is induced if all types in T \ T ′

play according to σ∗T\T ′, and all types in T ′ play according to σ′T ′, is preferred by all

individuals with types in T ′; i.e, for all t ∈ T ′,

ŨM((σ∗T\T ′ , σ
′
T ′), σ

′
T ′(t), t) > ŨM(σ∗, σ∗(t), t) . (10)

(c) The deviation is subcoalition-proof: there is no strict subset T ′′ of T ′ – i.e., a subset

T ′′ of T ′ so that there are t′ ∈ T ′ and t′′ ∈ T ′′ with ω(t′) 6= ω(t′′), or θ(t′) 6= θ(t′′),

or β(t′) 6= β(t′′) – with a strategy σ′′T ′′ : T ′′ → ∆(A), so that (σ∗T\T ′ , σ
′
T ′\T ′′ , σ

′′
T ′′) is

an interim Nash equilibrium, and, for all t ∈ T ′′,

ŨM((σ∗T\T ′ , σ
′
T ′\T ′′ , σ

′′
T ′′), σ

′′
T ′′(t), t) > ŨM((σ∗T\T ′ , σ

′
T ′), σ

′
T ′(t), t) . (11)

An equilibrium σ∗ is coalition-proof only if it does not leave incentives for a subset of

individuals to coordinate their behavior in such a way that they induce an outcome

that makes all of them better off. Our definition is very demanding with respect to the

23For a discussion of the law of large numbers in large economies, see Sun (2006), Al-Najjar (2004) or

Judd (1985).
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consistency requirements that such a deviation from an equilibrium strategy σ∗ has to

satisfy: the behavior that is prescribed by the deviation must induce a new interim Nash

equilibrium, i.e., playing according to (σ∗T\T ′ , σ
′
T ′) must be a best response, both for the

deviating types as well as for the non-deviating types. Also, the outcome that is induced

by the deviation must be beneficial for all deviating types. Finally, we require that a

deviation must itself be coalition-proof; that is, it must not trigger a further deviation by

a subcoalition of the deviators.

The definition is a simplified version of the notion of a coalition-proof Nash equilibrium

due to Bernheim et al. (1986). In particular, we also take a non-cooperative approach

to coalition formation, and we also require that a coalition is subcoalition-proof, i.e.,

that the formation of a coalition cannot be undermined by the further deviation of a

subcoalition. For ease of exposition, we do not model a possibly infinite chain of successive

formations of subcoalitions. The reason that such a more elaborate treatment would yield

the same conclusion is as follows: Coalition-formation takes place at the level of types.

That is, a coalition is a subset T ′ of the set of types T , with the understanding that all

individuals with types in that subset form a coalition. Put differently, a coalition is a

collection of individuals with particular preferences and beliefs. With this approach, a

subcoalition of some initial coalition is a subset T ′′ of some set of types T ′ ⊂ T , and a

subsubcoalition would be a subset T ′′′ ⊂ T ′′, etc. Now, if we allowed for a possibly infinite

chain of successive formations of subcoalitions, this would make it more difficult to form

a successful coalition and therefore make the set of implementable social choice functions

weakly larger. The question then is whether it would make the set also strictly larger. For

the given environment the answer is “no”. The reason is that the proofs of Propositions 3

(necessary conditions for robustness and coalition-proofness) and 5 (sufficient conditions)

below are based on the construction of coalitions and subcoalitions of minimal size, namely

coalitions of individuals who all have the same payoff and belief types and which therefore

possess no further subcoalitions. A requirement that these coalition and subcoalitions

must themselves be coalition-proof would therefore have no bite.

We can think of the collective deviation as resulting from an own mechanism design

problem that the deviating agents face. Condition (a) can be interpreted as an incentive

compatibility constraint, so that behaving according to the strategy profile (σ∗T\T ′ , σ
′
T ′)

is indeed a best response. Condition (b) is a participation constraint which ensures that

the deviators are made better off. Finally, condition (c) requires that the mechanism on

which the collective deviation is based, must also be coalition-proof. A similar approach to

coalition formation has previously been introduced by Laffont and Martimort (1997, 2000)

and Che and Kim (2006). It has been extended to a large economy model by Bierbrauer

and Hellwig (2010). These papers explicitly model the formation of a coalition as an

extensive form game. The approach taken here is different in that we define a coalition-

proof equilibrium for a game in normal form. This simplifies the exposition, without
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affecting the set of implementable social choice functions.24

We do not consider the possibility that members of a coalition may communicate with

each other so as to acquire more precise information on the state of the economy, and

to adjust their communication with the mechanism designer accordingly. For a given

type space, allowing for such communication would tend to make coalition formation

easier and therefore to make the set of implementable social choice functions smaller.

However, below we will focus on social choice functions that are both robust and coalition-

proof. This implies, in particular, that coalition-proofness has to hold on type spaces

where all individuals “know” the state of the economy so that there is no need of such

communication. It can be shown that the necessary condition of coalition-proofness on

all such “complete information type spaces” is the key element in the characterization of

coalition-proofness on all type spaces. One can therefore show that the set of robust and

coalition-proof social choice functions would not shrink if we allowed for communication

among deviators.25

5.2 Robust and coalition-proof implementation

Given a type space [(T, T ), π, β], a social choice function (q, c, y) is said to be imple-

mentable as a coalition-proof interim Nash equilibrium, if there is a mechanism M and

a strategy σ∗ such that (i) σ∗ is a coalition-proof interim Nash equilibrium on this type

space, and (ii) the equilibrium allocation coincides with the prescription of the social

choice function for every δ; i.e., we have that, for every δ,

Q(α(δ, σ∗)) = q(s(δ)) (12)

and, for each δ ∈ ∆(T ) and t ∈ T ,

C(α(δ, σ∗), a(t)) = c(s(δ), ω(t), θ(t)) and Y (α(δ, σ∗), a(t)) = y(s(δ), ω(t), θ(t)) ,(13)

σ∗(t)-almost surely. Note that since individuals play mixed strategies, a(t) and also

C(α(δ, σ∗), a(t)) and Y (α(δ, σ∗), a(t)) are random quantities with probability distribution

24Bierbrauer and Hellwig (2010) also study a problem of mechanism design in a large economy model

with private information and aggregate uncertainty. They model an extensive form game of coalition-

formation under conditions of incomplete information in the following way: (i) an overall mechanism

designer first proposes a mechanism, (ii) then agents may choose to communicate with the designer of

a collusive side mechanism, (iii) the designer of this collusive mechanism then uses the information that

is contained in the reports that he receives to give individuals recommendations on how to behave in

the overall mechanism, (iv) individuals choose whether or not to follow the recommendation and send a

report to the overall mechanism. Coalition-proofness then requires that no subset of types can benefit

from using such a collusive side mechanism. The necessary and sufficient conditions for coalition-proofness

and robustness of a social choice function that follow from this very detailed approach are equivalent to

those that follow from coalition-proofness and robustness as defined here.
25Again, see Bierbrauer and Hellwig (2010) for an explicit modeling of a communication stage in an

extensive form game of coalition formation.
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σ∗(t). Equation (13) requires that C(α(δ, σ∗), a(t)) and Y (α(δ, σ∗), a(t)) are with proba-

bility 1 equal to the values of c and y that are stipulated by the social choice function for

a type t individual in state δ.

We say that a social choice function is robustly implementable and coalition-proof, if,

given (T, T ) and π, there is a mechanism M and a strategy σ∗ such that requirements (i)

and (ii) are fulfilled, for every belief system β.

Subsequently, we derive necessary and sufficient conditions for robustness and coalition-

proofness. However, before going into details, we use Example 2 to illustrate the interplay

of robustness and coalition-proofness. The example is meant to illustrate the following:

if our analysis was based on specific assumptions about beliefs, the mechanism designer

could typically exploit her knowledge of the belief system so that the requirement of

coalition-proofness would not have a lot of bite. If instead we insist on the use of robust

mechanisms, coalition-proofness becomes a substantive constraint. The example also il-

lustrates why, with the solution concept of a coalition-proof interim Nash equilibrium, the

revelation principle does not hold. It shows a social choice function that can be imple-

mented as a coalition-proof interim Nash equilibrium if a non-direct mechanism is used,

but which cannot be implemented if a direct mechanism is used.26

Example 2 revisited. We argued before that the social choice function in Figure 2

cannot be implemented in a coalition-proof way, under the assumption that attention

is restricted to direct mechanisms and to truthtelling equilibria: a collective lie, so that

some high-skilled individuals declare a low-skill level, induces a new equilibrium in which

the high-skilled individuals are better off. In the following, we show that a mechanism

designer who knows the belief system β can generally eliminate the scope for such a

collective deviation by using a non-direct mechanism. We will also argue that the scope

of such non-direct mechanisms is reduced if we insist on robustness.

For the sake of concreteness, suppose first that all high-skilled individuals believe

that “rich” and “poor states” are equally likely, and, in addition, that this is known by

the mechanism designer. He may then use a non-direct mechanism with an action set

A = {a1, a2, a3} and an outcome function Z := (C, Y ) which works as follows: in any state,

an individual who chooses action a1 receives the consumption-income bundle dedicated

to the low-skilled individuals; i.e., taking the action a1 is interpreted as saying “I am a

26For the solution concept of an interim Nash equilibrium, the revelation principle applies, i.e. any

social choice function that can be reached by some interim Nash equilibrium of some mechanism, can

also be reached as a truthtelling equilibrium of a direct mechanism. It is known that the more ambitious

task of full implementation – i.e., finding a mechanism so that every interim Nash equilibrium of that

mechanism reaches the social choice function – may require the use of non-direct mechanism, see, e.g.,

Jackson (2001) for an overview. While coalition-proofness is not the same as full implementation, there

is a similarity in that both postulate that there must not exist further equilibria with certain properties.
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low-skilled individual”. Likewise, an individual who chooses action a2 receives the bundle

intended for the high-skilled individuals. The action a3 gives a very unattractive bundle

if many individuals choose action a2. This is illustrated in the left part of Figure 2, where

δ′ indicates a distribution of actions so that more than half of the population chooses a2.

However, if only few individuals choose action a2, then action a3 is very attractive for

the high-skilled individuals. This is illustrated by the lower part of Figure 5, where δ′′

indicates a distribution of actions so that less than half of the population chooses a2.

Insert Figure 5 here

For the given specification of beliefs, the non-direct mechanism implements the social

choice function in a coalition-proof way, because there is no longer an equilibrium in which

high-skilled individuals communicate having a low-skill level. Conditional on many high-

skilled individuals choosing action a1, it is a best response for a high-skilled individual to

choose action a3. Moreover, the equilibrium in which all high-skilled individuals choose

action a2, and thereby communicate their skill level truthfully to the mechanism designer,

remains intact: if the situations in Figure 5 arise with equal probability, then choosing a2

is a best response for the high-skilled, because action a3 yields a very bad outcome with

probability 1
2
.

However, the non-direct mechanism does no longer work if we insist on robustness. To

see this, suppose that all individuals believe that “poor states” occur with probability 1.

Then, all individuals believe that the payoffs associated with actions a1, a2, and a3 are as

shown in the right part of Figure 5. Consequently, all individuals with a high-skill level

will choose action a3 instead of action a2, so that the social choice function is no longer

reached.

Necessary conditions for robustness and coalition-proofness

For a given social choice function (q, c, y), define the associated indirect utility function

V by

V (fH , pH , pL, ω, θ) = θq(fH , pH , pL) + u(c(fH , pH , pL, ω))− y(fH , pH , pL, ω)

ω
.

Proposition 3 If (q, c, y) is robust and coalition-proof, then it must be true that: (i)

For any given pair (fH , pL), V (fH , pH , pL, ωH , θL) is a non-increasing function of pH ,

and V (fH , pH , pL, ωH , θH) is a non-decreasing function of pH , and (ii) for any given pair

(fH , pH), V (fH , pH , pL, ωL, θL) is a non-increasing function of pL, and V (fH , pH , pL, ωL, θH)

is a non-decreasing function of pL.

To obtain an intuitive understanding of these conditions it is instructive to relate them to

the incentive constraints which are familiar from the literature on the elicitation of public-

goods preferences, which is based on models with a finite number of agents. Suppose that
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fH and pH are known quantities so that a state s of the economy can be identified with

the share of low-skilled individuals with a high valuation of public goods, pL. Suppose

that pL can only take two values denoted by p
L

and p̄L with p̄L > p
L
. Denote by

vL(pL) = u(c(pL, ωL))− y(pL, ωL)

ωL

the utility that low-skilled individuals derive from the consumption of private goods and

work effort in state pL. The requirement that V (fH , pH , pL, ωL, θL) is a non-increasing

function of pL implies that

θLq(pL) + vL(p
L
) ≥ θLq(p̄L) + vL(p̄L) . (14)

Likewise, the requirement that V (s, ωL, θH) is a non-decreasing function of pL implies that

θHq(p̄L) + vL(p̄L) ≥ θHq(pL) + vL(p
L
) . (15)

These constraints admit the following interpretation: There is a representative low-skilled

agent. It is unknown whether this representative agent has a high or a low valuation of

public goods. If his valuation is high, the outcome for state p̄L is warranted and the

incentive compatibility constraint in (15) requires that the representative agent likes this

outcome better then the outcome for state p
L
, which would be warranted if his valuation

was low. Likewise the incentive constraint in (14) requires that a representative low-skilled

agent with a low valuation of public goods likes the outcome for state p
L

better than

the outcome for state p̄L. These constraints resemble those from the mechanism design

literature on public goods provision that assumes that individuals value a public good

and a private good called “money”. Here, however, the agent is not trading off the utility

from public-goods provision against monetary payments, but against the implications

that changes in the income tax system have for his well-being. Proposition 3 requires

that these constraints hold for any such pair (p
L
, p̄L) with p̄L > p

L
. This is equivalent

to the monotonicity constraints in part (ii) of Proposition 3. Part (i) of the proposition

states the analogous constraints for a representative high-skilled agent.

The logic of the proof of Proposition 3 is as follows.27 If, say, the constraint that

V (s, ωL, θH) is a non-decreasing function of pL is violated, this implies that there exist

pL and p′L with p′L > pL so that V (fH , pL, pH , ωL, θH) > V (fH , p
′
L, pH , ωL, θH). If we

now consider a type space, so that all individuals assign mass 1 to a distribution of

types δ with s(δ) = (fH , p
′
L, pH), individuals with a low skill level and a high valuation

of public goods have an incentive to lie. If they communicate a low as opposed to a

high valuation to the mechanism designer – more specifically, if they, falsely, announce

27A difficulty for the proof of Proposition 3 is that we cannot rely on the revelation principle. How-

ever, given some equilibrium σ∗, a false communication of, say, the public-goods preference by a type t

individual can still be defined in a meaningful way: it takes the form of behaving according to σ∗(t̂), for

some type t̂ 6= t with θ(t̂) 6= θ(t).
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a low valuation with probability 1− pL
p′L

, and, truthfully, announce a high valuation with

probability pL
p′L

– they will receive the outcome intended for the case that s = (fH , pH , pL),

and are thereby made better off, i.e., requirement (b) in Definition 1 is fulfilled. Since

the lie involves only a false communication of public-goods preferences and, by individual

incentive compatibility, an individual’s (c, y)-bundle does not depend on his public-goods

preferences, every individual is giving a best response. Hence, the deviation satisfies

property (a). Finally, all these individuals have the same preferences, and the same

beliefs so that there exists no strict subset of types. This implies that the deviation is

subcoalition-proof, i.e., property (c) is also satisfied.

To see the significance of the constraints in Proposition 3, it is instructive to check

which of these constraints are satisfied and which ones are violated by the Mirrleesian

social choice function in Proposition 2. The constraint that low-skilled individuals with

a high valuation of public goods do not benefit from understating their preferences is

satisfied provided that ∂V ∗(fH ,pH ,pL,ωL,θH)
∂pL

≥ 0, where V ∗ is the indirect utility function

that was defined in Section 4. By equation (9), this condition is violated whenever

θHωL <
θ̄(fH , pH , pL)

λ(fH , pH , pL)
. (16)

The constraint that high-skilled individuals with a low valuation of public goods do not

benefit from exaggerating their preferences is satisfied provided that ∂V ∗(fH ,pH ,pL,ωH ,θL)
∂pH

≤
0. It can be shown that this condition is violated whenever

θLωH >
θ̄(fH , pH , pL)

λ(fH , pH , pL)
. (17)

Since θLωH = θHωL, equations (16) and (17) imply that the Mirrleesian social choice

function violates coalition-proofness, whenever θHωL 6= θ̄(fH ,pH ,pL)
λ(fH ,pH ,pL)

. In essence, this implies

that there is no state s of the economy so that the Mirrleesian social choice function is

coalition-proof. This is illustrated by Figure 6. In this Figure, we treat fH as a given

parameter, and vary only pH and pL. The line in the figure is the locus along which

θLωH = θ̄(fH ,pH ,pL)
λ(fH ,pH ,pL)

, or, equivalently, along which pL = 1 − fH
1−fH

pH . For every state s

that is not on this line, coalition-proofness fails. This shows that the failure of coalition-

proofness is not limited to a tiny subset of the set of states S = [0, 1]3. It occurs everywhere

in the unit cube, with the exception of those sates that belong to the intersection of the

unit cube and the plane defined by {(fH , pH , pL) | pL = 1− fH
1−fH

pH}.28 These observations

are summarized in the following Proposition.

Proposition 4 The optimal Mirrleesian policy, characterized in Proposition 2, violates

one of the necessary conditions for robustness and coalition-proofness in Proposition 3,

for every s ∈ S \ S+ where S+ := {(fH , pH , pL) | pL = 1− fH
1−fH

pH}.
28Without the assumptions θL = ωL and θH = ωH there could be subsets of S in which the Mirrleesian

policy satisfies the necessary conditions in Proposition 3.

23



Insert Figure 6 here

Sufficient conditions for robustness and coalition-proofness

The following Proposition states a sufficient condition for coalition-proofness. More specif-

ically, it states that all social choice functions in a set Λ(ε) are robust and coalition-proof.

This set is defined as the set of social choice functions with the following properties: (i)

For every s, the necessary conditions in Proposition 3 are satisfied, and at most one of

these conditions is binding, (ii) for every s, the resource constraint in (1) holds, and (iii)

for some given ε > 0,

u(c(s, ω))− y(s, ω)

ω
≥ u(c(s, ω̂))− y(s, ω̂)

ω
+ ε , (18)

for every s, ω, and ω̂. These constraints require that, for every s, an individual with skill

level ω prefers the “own” consumption-output bundle (c(s, ω), y(s, ω)) strictly over any

alternative bundle (c(s, ω̂), y(s, ω̂)), where the parameter ε is the minimal intensity of this

strict preference; that is, the constraints in (18) require that there is a little bit of slack

in the incentive compatibility constraints in (5).

Proposition 5 Every social choice function in Λ(ε) is robustly implementable as a coalition-

proof interim Nash equilibrium.

The proof is based on a direct mechanism that reaches the given social choice function in

a truthtelling equilibrium.29 We verify that this equilibrium is coalition-proof, whatever

the belief system β is. As a first step, we observe that there is no collective deviation that

involves a false communication of productive abilities. For social choice functions in Λ(ε),

all individual incentive compatibility constraints hold as strict inequalities, which implies

that there is no equilibrium in which individuals declare false productivity levels. Hence,

any such deviation would violate condition (a) in Definition 1.

Next, consider a deviation that involves only lies about public-goods preferences. Any

such deviation induces a new equilibrium because (c, y)-bundles do not depend on public-

goods preferences. Suppose first that the types that participate all have the same payoff

type, i.e., that they all have the same skill level and the same public-goods preference.

For instance, suppose that they all have the skill level ωH and the public-goods preference

θL. If these individuals lie about their public-goods preferences, this implies that the

mechanism designer ends up with the perception that pH is higher than it actually is.

By the constraints in Proposition 3, V (fH , pH , pL, ωH , θL) is a non-increasing function of

pH , so that this deviation does not make the participating individuals better off, i.e., it

violates condition (b) in Definition 1.

29Hence, our proof implies, in particular, that if the sufficient conditions in Proposition 5 are satisfied,

then we may, without loss of generality, focus on direct mechanisms and truthtelling equilibria.
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Now suppose that the types who collectively lie about their public-goods preferences

have diverse payoff types. The assumption that, for every s, at most one of the neces-

sary conditions in Proposition 3 binds, implies that there is always a set of types who

would like to “withdraw” their contribution to the deviation, thereby free-riding on the

contribution of others. For instance, suppose that individuals with payoff type (ωH , θL)

and individuals with payoff type (ωH , θH) lie about their public-goods preferences. From

an ex post perspective, either the (ωH , θL)-individuals think that pH , as perceived by the

mechanism designer, is too high, or the (ωH , θH)-individuals think that pH is too low.

Consequently, ex interim, individuals with payoff type (ωH , θL) understand that, taking

the lie of individuals with payoff type (ωH , θH) as given, they are weakly better off if

they communicate their characteristics truthfully. Likewise, the (ωH , θH)-individuals are

weakly better off if they refuse to lie about their public-goods preferences. Moreover, if

the deviation affects the implemented policy with positive probability (which is necessary

in order to satisfy condition (b) in Definition 1), then one of these groups is in fact strictly

better off if it communicates truthfully, which implies that the deviation does not satisfy

condition (c) in Definition 1.

The assumption that the belief system is moderately uninformative is needed to rule

out coalitions with heterogeneous preferences where homogeneous subcoalitions see no

reason to withdraw their contribution simply because they assign probability 0 to the set

of states in which the withdrawal would make them better off.

Why are these conditions useful for finding an optimal social choice function?

Propositions 3 and 5 make it possible to solve for the optimal social choice function via the

following procedure: First, characterize the optimal social choice function among those

that are individually incentive-compatible, resource-feasible and satisfy the necessary con-

ditions in Proposition 3. Second, verify that the optimal social choice function is indeed

such that, for every s, at most one of the monotonicity constraints holds as an equality,

more formally, that it belongs to the set Λ(0). This procedure will be applied in the

following Section.

The social choice functions in Λ(0) are not generally coalition-proof, as we explain

below, using Example 2 one more time. However, as follows from Proposition 5, strict

individual incentive compatibility, or, equivalently, a tiny amount of slack in the individual

incentive compatibility constraints in (5) suffices to ensure robust implementability as a

coalition-proof interim Nash equilibrium. We therefore expect that every social choice

function that belongs to Λ(0) can be approximated by one that belongs to Λ(ε) for some

small ε. This is also illustrated below in the context of Example 2.30

30A general proof could proceed as follows: For the problem to characterize an optimal robust and

coalition-proof social choice function, formally studied in the next section, one replaces the incentive

compatibility constraints in (5) by those in (18). If, for ε close to zero, the optimal social choice function
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Example 2 revisited. To illustrate why the social choice functions in Λ(0) are not

necessarily coalition-proof themselves but can be approximated by coalition-proof social

choice functions, it is instructive to look once more at the example in Section 4, where the

social choice function that is illustrated in Figure 4 cannot be implemented as a robust

and coalition-proof equilibrium, because the high-skilled have an incentive to lie. We will

now argue that there is, however, a social choice function which is arbitrarily close and

does not face this problem.

Suppose that the social choice function in Figure 4 is modified as follows: in both

graphs, the bundle for high-skilled individuals is moved to a slightly higher indifference

curve.31 This implies that truth-telling is the unique best response of the high-skilled,

for every state s. A deviation that involves lies about skill levels is therefore no longer

consistent with equilibrium behavior. This illustrates the general insight in Corollary ??.

Once we introduce a tiny amount of slack into the incentive compatibility constraints,

deviations that involve lies about skill levels are no longer viable. The example also

shows why the slack is needed. If incentive compatibility constraints are binding, lies that

involve skill levels are a concern.

5.3 On the separability of individual and collective incentive

problems

The reasoning in section 5.2 translates the requirement of coalition-proofness into a sim-

ple set of inequality constraints: there must not exist a group of individuals who could

benefit from the policy change that is induced by a false communication of public-goods

preferences. This simple characterization is available because as far as coalition-proofness

is concerned, we may, without loss of generality, assume that productive abilities are

communicated truthfully: if we introduce a tiny amount of slack into individual incen-

tive compatibility constraints, any lie that involves a false communication of productive

abilities is effectively deterred.

A first major insight of the paper is therefore that preference and productivity shocks

have very different implications for the set of robust and coalition-proof social choice func-

tions: while appropriately calibrated incentives at the individual level make a manipula-

tive communication of productive abilities unviable, the communication of public-goods

preferences cannot be addressed in this way. As we have seen in Section 3, individual

incentive compatibility implies that individuals who differ only in their public-goods pref-

erences need to be treated equally in terms of their consumption level c and their output

depends in a continuous way on the parameter ε, then it follows that any social choice function that is

optimal in the set Λ(0) can be approximated by one that is robust and coalition-proof. Providing such a

proof of continuity is, however, beyond the scope of this paper.
31To preserve feasibility, we may simultaneously have to move the low-skilled individuals to a slightly

lower indifference curve.
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requirement y. Consequently, individuals are willing to lie about their public-goods pref-

erences, if this has positive consequences at an aggregate level. A social choice function

therefore has to be such that those lies are unattractive.

6 Optimal robust and coalition-proof social choice

functions

In this section, we characterize the social choice function which maximizes expected util-

itarian welfare E[W (s)] subject to the requirements of individual incentive compatibility,

resource feasibility and coalition-proofness. In principle, there are three different sources

of aggregate uncertainty: (i) uncertainty about the cross-section distribution of productive

abilities, i.e., about fH (ii) uncertainty about the distribution of public-goods preferences

among low-skilled individuals, characterized by pL, and (iii) uncertainty about the distri-

bution of public-goods preferences among high-skilled individuals, or the value of pH . To

simplify the exposition, we will look at each source in isolation, i.e. we ask first what the

optimal policy looks like if only fH is unknown, then we ask what the the optimal policy

looks like if only pL is unknown, etc. 32

We assume that the dimension in which aggregate uncertainty prevails is commonly

known. This implies that the mechanism designer can prevent individuals from commu-

nicating their characteristics in a way that is inconsistent with what is commonly known

about the set of states. He simply has to make the outcomes that are induced by such

deviations sufficiently unattractive.

The case in which only fH is unknown is straightforward. We have seen in the previous

section that, even though there may be uncertainty about the population share of high-

skilled individuals, eliciting this information does not require an essential adjustment of

the policy mechanism. The optimal coalition-proof policy is therefore essentially equiva-

lent to the optimal Mirleesian policy. Below we focus on the case in which pL is unknown.

The case in which pH is unknown is very similar and is dealt with in the Appendix.

If pL is unknown, the optimal Mirrleesian policy fails to be coalition-proof because, if

pL is sufficiently high, low-skilled individuals with a high valuation of public goods would

benefit from understating their preferences. To derive an optimal coalition-proof policy,

we therefore have to add the constraint that this behavior must not be attractive.

Given that fH and pH are assumed to be known, we can identify a state s of the

economy with a particular value of pL. We assume that the mechanism designer has

subjective beliefs about the possible realizations of pL. For simplicity, we assume that she

32A comprehensive treatment where fH , pH and pL are all unknown would be feasible and give rise

to conclusions that are qualitatively similar. However, this would come at the cost of a more involved

analysis.
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assumes that pL is uniformly distributed over the unit interval.33 The optimal policy can

now be characterized as a solution to the following optimization problem: For every pL ∈
[0, 1], Choose c(pL, ωL), y(pL, ωL), c(pL, ωH), y(pL, ωH) and q(pL) in order to maximize

E [W (pL)] subject to the incentive constraints in (5), the resource constraints in (6), and

the constraint ∂V (pL,ωL,θH)
∂pL

≥ 0. We refer to this problem in the following as problem

PL(pH , fH).

We solve problem PL(pH , fH) using a two-step-procedure: first, for given pL, we treat

the public-goods provision level, q(pL), and the utility that low-skilled individuals realize

from their (c, y)-bundle, vL(pL), as given. A solution to problem PL(pH , fH) has to be

such that, given these variables, the utility of the high-skilled is chosen optimally subject

to the individual incentive compatibility and resource constraints; i.e.,

vH(pL) = VH(vL(pL), r(q(pL))) ,

where, for any pair (vL, ρ),

VH(vL, ρ) := max u(cH)− yH
ωH

s.t. u(cH)− yH
ωH
≥ u(cL)− yL

ωH
, u(cL)− yL

ωL
≥ u(cH)− yH

ωL
,

fH(yH − cH) + (1− fH)(yL − cL) = ρ , u(cL)− yL
ωL

= vL .

The function VH can be interpreted as the Pareto-frontier of a Mirrleesian income tax

problem with no public goods, but an exogenous revenue requirement ρ.34

Given that vH(pL) = VH(vL(pL), r(q(pL)), we can, in a second step, determine the op-

timal values of q(pL) and vL(pL). For this purpose, we consider the following optimization

problem: choose the functions q : pL 7→ q(pL) and vL : pL 7→ vL(pL) in order to maximize∫ 1

0

{θ̄(pL)q(pL) + fHVH(vL(pL), r(q(pL))) + (1− fH)vL(pL)}dpL

subject to the constraint, that for all pL,

θHq
′(pL) + v′L(pL) ≥ 0 .

The constraint ensures that the utility of low-skilled individuals with a high valuation of

public goods is a non-decreasing function of their population share. Otherwise coalition-

proofness would be violated.35 With a Mirrleesian approach, this constraint would not

33These beliefs affect the way in which the mechanism designer is making trade-offs between welfare

levels in different states of the economy. The assumption of a uniform prior simplifies the exposition.

However, the logic of the analysis would remain the same with alternative assumptions about the mech-

anism designer’s beliefs.
34For a complete characterization of the function VH , see Proposition 1 in Bierbrauer and Boyer (2010).
35To achieve coalition-proofness we must also guarantee that low-skilled individuals with a low valuation

are not tempted to exaggerate their preferences. This requires that θLq
′(pL) + v′L(pL) ≤ 0. Fortunately,

it can be shown that this constraint is never binding. If the constraint θHq
′(pL) +v′L(pL) ≥ 0 binds, then

it follows from θL < θH and q′(pL) > 0, that θLq
′(pL) +v′L(pL) < 0. If the constraint does not bind, then

the optimal coalition-proof policy coincides with the optimal Mirrleesian policy. Again, this implies that

θLq
′(pL) + v′L(pL) < 0.
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be taken into account and the objective function could be maximized pointwise. Conse-

quently, the optimal Mirrleesian policy is such that, for every pL, q(pL) and vL(pL) are

characterized as the solution to the following first order conditions:

θ̄ + fHVH2 r
′(q) = 0 and fHVH1 + 1− fH = 0 ,

where VHj is the derivative of the function VH with respect to its jth-argument. The first

equation says that the social benefit of increased public-goods provision equals zero, and

the second equation requires that the welfare gain from a marginal increase of the utility

promise to the low-skilled individuals must be zero.

In the following, we say that there is an upward distortion of the public-goods provision

level whenever θ̄ + fHVH2 r
′(q) < 0, so that a reduction of the public-goods provision

level would increase welfare. Analogously, we say that the public-goods provision level

is distorted downwards when θ̄ + fHVH2 r
′(q) > 0. We say that marginal income taxes

and direct transfers to the low-skilled are distorted upwards if fHVH1 + 1 − fH < 0,

so that reducing the utility promise to the low-skilled would increase welfare. Marginal

income taxes and direct transfers to the high-skilled are said to be distorted upwards if

fHVH1 + 1− fH > 0. This choice of terminology is justified by the observation that there

is a monotonic relation between the utility promise to the low-skilled and our measures of

how distortionary and redistributive the tax system is: If vL is higher than stipulated by

the optimal Mirrleesian policy, then the underlying allocation is such that the low-skilled

individual’s marginal income tax rate as well as their income transfers are higher than

under the Mirrleesian policy.36

Proposition 6 The solution to Problem PL(pH , fH) has the following properties. There

are cutoff values γ1 and γ2 with 0 ≤ γ1 < γ2 < 1 such that:

(a) For pL ≤ γ1 the solution to PL(pH , fH) coincides with the Mirrleesian policy.

(b) For pL ∈ (γ1, γ2), marginal income taxes, direct transfers to the low-skilled and

public-goods provision levels are distorted downwards.

(c) For pL > γ2, marginal income taxes, direct transfers to the low-skilled and public-

goods provision levels are distorted upwards.

Part (a) of the Proposition says that there may or may not be a parameter region, where

the optimal coalition-proof policy and the optimal Mirrleesian policy coincide. Parts (b)

and (c) say that there always is a region where the two policies do not coincide, i.e. a region

in which the optimal coalition-proof policy is distorted. (Figure 7 provides a computed

example in which the optimal policy coincides with the Mirrleesian policy for pL ≤ 0.25

36See Proposition 2 in Bierbrauer and Boyer (2010).
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and is distorted otherwise.). These distortions have a particular pattern: First, public-

goods provision and income taxation are always distorted in the same direction. If there

is overprovision of public-goods, then there is also a tax system that is too distortionary

and too redistributive. If there is underprovision of public goods, then the tax system is

not redistributive enough and its distortions are too small. Second, upward distortions

occur if the demand for public goods is high (pL large), and downward distortions occur

if the demand for public goods is low.

The proof of Proposition 6 relies mainly on two optimality conditions, which are

formally derived in the Appendix. The first one is as follows:

1

θH
(θ̄ + fHVH2 r

′(q)) = fHVH1 + 1− fH . (19)

This equation requires that the marginal social benefit from increased public-goods provi-

sion θ̄+ fHVH2 r
′(q) is proportional to the marginal social benefit from increased redistri-

bution fHVH1 +1−fH .37 Equation (19) implies a complementarity between redistribution

and public-goods provision: if we have an excessively distortionary and redistributive tax

system, which implies fHVH1 + 1 − fH < 0, then it has to be the case that public-good

provision is also higher than optimal, θ̄ + fHVH2 r
′(q) < 0, and vice versa.

An intuitive understanding of this finding may be obtained as follows: We need to

deviate from the Mirrleesian policy, if the constraint θHq
′(pL) + v′L(pL) ≥ 0 binds so that

the the utility of low-skilled individuals with a high valuation of public goods remains

constant as pL goes up, i.e. θHq(pL) + vL(pL) = const. Now suppose that, for some

pL, q(pL) is too high and vL(pL) is too low from a welfare perspective. Then we could

raise welfare by lowering q(pL) and increasing vL(pL) without violating the constraint

that θHq(pL) and vL(pL) add up to a constant. Hence, a situation where the public-goods

provision level and the tax system are distorted in opposing directions cannot be optimal.

Proposition 6 stipulates that public-goods provision and redistribution should be dis-

torted upwards if pL is high, and that they should be distorted downwards otherwise.

This follows from the second optimality condition, which stipulates that the “average

distortion” must be zero, i.e., a solution has to be such that∫ 1

0

{θ̄ + fHVH2 r
′(q)}dpL =

∫ 1

0

{fHVH1 + 1− fH}dpL = 0 . (20)

This condition says that any upward distortion of public-goods provision and redistri-

bution that occurs over some subinterval of [0, 1] has to be balanced by a downward

distortion over some other subinterval. Given that this “budget condition” holds, it is

37The Mirrleesian policy also satisfies this since

fHVH1 + 1− fH = 0 and θ̄ + fHVH2 r
′(q) = 0 .

However, as we have argued before (see Figure 4), it violates the constraint θHq
′(pL) + v′L(pL) ≥ 0 over

some subinterval of [0, 1].
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optimal to have the upward distortions of public-goods supply concentrated in the region

where it contributes most to welfare, i.e. where θ̄ is particularly high. This is the case for

high values of pL.

Figure 7 below illustrates the optimal tax and expenditure policy, again under the

assumptions that u(c) =
√
c and that r(q) = 1

2
q2. Moreover, we assume that fH = pH = 1

2
.

The figure illustrates how the public-goods provision, the net tax payment of the low-

skilled, their marginal income tax rates, and the distortion relative to the Mirrleesian

policy, as measured by fHVH1 + 1 − fH , vary with pL. In this figure, thin grey lines

represent the Mirrleesian policy and fat black lines represent the optimal coalition-proof

policy.

Insert Figure 7 here

The figure illustrates that the optimal coalition-proof policy coincides with the optimal

Mirrleesian policy for pL close to zero. Then, there is a range in which income transfers

to the low-skilled as well as their marginal income tax rates are lower than under the

Mirrleesian policy. Moreover, the utility promise to the low-skilled, vL, is lower: we have

that fHVH1 + 1 − fH > 0 or, given that fH = 1
2
, | VH1 |< 1. For high values of pL, by

contrast, direct income transfers to the low-skilled, their marginal income tax rate and

their utility promise are distorted upwards.

The most striking difference between the Mirrleesian policy and the optimal coalition-

proof policy concerns the relation between changes in the public-goods provision level and

changes in the tax policy. If we consider an increase of pL, i.e., a preference shock that

leads to an increased supply of public goods, then, under the Mirrleesian policy, there is

no effect at all on the tax policy. With the optimal coalition-proof policy, by contrast, the

tax policy is affected: If the initial situation involves large expenditures on public goods,

then a further increase of these expenditures goes together with a more redistributive

and more distortionary income tax system. If the initial expenditure level is small, then

increased spending on public goods has either no effect on the tax policy, or is associated

with a less redistributive and less distortionary income tax system.

Empirical implications. Broadly speaking, Proposition 6 gives rise to the following

conclusion: If the demand for public goods is low, then public-goods provision as well

as marginal income taxes and direct income transfers are distorted downwards. If the

demand for public goods is high, then all these policies are distorted upwards. Moreover,

the numerical example suggests that an increase in expenditures is most likely associated

with an increase of income transfers and increase of marginal income tax rates.

The main empirical implication of the analysis is the following: Suppose that we

compare two countries whose policies are interpreted as resulting from the mechanism

design exercise above. Then the prediction would be that the country that spends more
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on public goods will also have higher marginal income taxes and higher income transfers.

Also, from Mirrleesian perspective, taxes, transfers and expenditures are too high in

the country that spends a lot, and too low in the country that spends only little. For

instance, if we interpret the US and Sweden as two countries who have essentially the

same economic fundamentals (the same productivity of the average worker), but among

the Swedes more people have a high valuation of public goods, then we would not only

expect public expenditures to be higher in Sweden, but also the marginal income tax rates

below the top, and the level of direct income transfers to the poor. We would not arrive

at this prediction on the basis of the simple Mirrleesian model that led to Proposition 2.

Of course, one has to be careful when trying to interpret the results from a normative

exercise in a positive way. In the real world, public policy is not determined by optimal

mechanism design. However, the requirement of coalition-proofness has a positive inter-

pretation. It is a political economy constraint capturing the possibility that like-minded

individuals may coordinate their actions – e.g., when they take voting decisions – to get

their preferred policies. The incorporation of this additional constraint therefore brings

the outcomes of normative public economics closer to the forces that determine policy

outcomes in the real world.

7 Concluding Remarks

This paper has analyzed a large economy in which individuals are privately informed

about their productive abilities and their preferences for public goods. Moreover, there

is aggregate uncertainty with respect to the cross-sectional distribution of these charac-

teristics. The analysis has identified two sets of incentive conditions for public policy.

Individual incentive compatibility constraints take into account how individuals respond

to an income tax system that determines their after-tax income as a function of their

labor supply. Collective incentive compatibility constraints take care of the possibility

that individuals may lobby for certain tax and expenditure policies, thus addressing the

political reactions that may be triggered by the policy mechanism.

Collective incentive compatibility requires that if a group of individuals experiences a

shift in their public-goods preferences such that their willingness to pay for a public good

is increased, then it must be true that more of the public good is provided (otherwise

these individuals understate their public-goods preferences) and that these individuals

pay more taxes (otherwise they exaggerate their preferences). More generally speaking,

the tax system confronts individuals with prices for public goods. These prices have to be

set in an “appropriate” manner, namely in such a way that the “true” demand for public

goods can be determined.

We have shown that introducing these considerations into a model of optimal taxation

and public-goods provision induces an interdependence of tax and expenditure policies.
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At an empirical level, the optimal policy gives rise to a positive relationship between the

expenditures on public goods, direct income transfers and marginal tax rates. The model

predicts that if two countries differ in their public expenditure levels, then the country

that spends more on public goods will also have more direct income transfers to the poor

and a more distortionary tax system.
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A Proofs

A.1 Proof of Proposition 1

We fix T, T , and π. By the standard version of the revelation principle, a social choice

function (q, c, y) is implementable as an interim Nash equilibrium by some mechanism M

on a given type space, if and only if it is truthfully implementable, i.e., if and only if there

exists a direct mechanism M with an action set A = T and outcome functions Q, and C

and Y such that (i) truthtelling is an interim Nash equilibrium; i.e., for all t,

t ∈ argmaxt′∈T

∫
∆(T )

U(Q(δ), C(δ, t′), Y (δ, t′), ω(t), θ(t)) dβ(δ | t) , (21)

and (ii) the equilibrium allocation is equal to the allocation stipulated by the social choice

function; for every δ,

Q(δ) = q(s(δ)) (22)

and, for every t,

C(δ, t) = c(s(δ), ω(t), θ(t)) and Y (δ, t) = y(s(δ), ω(t), θ(t)) . (23)

We first show that (b) ⇒ (a). Consider an incentive compatible social choice func-

tion (q, c, y). For an arbitrary belief system β construct a direct mechanism M =

[(T, T ), Q, C, Y ] such that (22) and (23) hold. We seek to verify that, for every t,

t ∈ argmaxt′∈T
∫

∆(T )
U(Q(δ), C(δ, t′), Y (δ, t′), ω(t), θ(t)) dβ(δ | t)

= argmaxt′∈T
∫
S
U(q(s), c(s, ω(t′), θ(t′)), y(s, ω(t′), θ(t′)), ω(t), θ(t)) dβ̂(s | t) ,

where, for any S ′ ⊂ S, β̂(S ′ | t) := β ({δ ∈ ∆(T ) | s(δ) ∈ S ′} | t). Equivalently, for every

t, (ω(t), θ(t)) solves

max(ω′,θ′)∈Ω×Θ

∫
S

U(q(s), c(s, ω′, θ′), y(s, ω′, θ′), ω(t), θ(t)) dβ̂(s | t) .
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This follows immediately from the fact that (q, c, y) is incentive compatible.

We now show that (a) ⇒ (b). Consider a type space where β is such that for some

s′, β({δ | s(δ) = s′} | t) = 1, for all t. Suppose that a direct mechanism (T,Q′, C ′, Y ′)

truthfully implements (q, c, y). Using conditions (22) and (23) to substitute for Q′, C ′,

and Y ′, the equilibrium condition in (21) becomes: for all t and all t′,

U(q(s′), c(s′, ω(t), θ(t)), y(s′, ω(t), θ(t)), ω(t), θ(t))

≥ U(q(s′), c(s′, ω(t′), θ(t′)), y(s′, ω(t′), θ(t′)), ω(t), θ(t)) ;

or, equivalently, for all (ω, θ) and (ω′, θ′),

U(q(s), c(s, ω, θ), y(s, ω, θ), ω, θ) ≥ U(q(s), c(s, ω′, θ′), y(s, ω′, θ′), ω, θ) .

Since the choice of s′ was arbitrary, the latter inequality holds for all s ∈ S. Hence,

(q, c, y) is individually incentive-compatible.

A.2 Proof of Proposition 3

Consider a class of types spaces which all have the same set of types (T, T ) and the same

payoff type function π, but which may differ in the belief system β. Suppose there is

a mechanism M = [(A,A), Q, C, Y ] with an equilibrium σ∗ that implements the social

choice function (q, c, y) as a coalition-proof interim Nash equilibrium on all these type

spaces. In particular, this requires that the mechanism reaches the social choice function;

i.e., for every δ, conditions (12) and (13) are fulfilled.

We show that this implies that V (s, ωL, θH) must be a non-decreasing function of pL.

(All other claims in Proposition 3 follow from a symmetric argument.) Suppose otherwise,

then there exist fH , pH pL and p′L with p′L > pL so that

V (fH , pL, pH , ωL, θH) > V (fH , p
′
L, pH , ωL, θH) . (24)

In the following, we will construct a deviation and show that there is a type space so that

it satisfies conditions (a), (b) and (c) in Definition 1. This contradicts the assumption

that σ∗ is a coalition-proof interim Nash equilibrium on every type space.

Step 1: Construction of a deviation

Intuitively, we seek to construct a deviation σ′T ′ for individuals with a type in T ′ = {t |
(ω(t), θ(t)) = (ωL, θH)}, which works as follows: a type t′ ∈ T ′, plays according to σ∗(t′)

with probability pL
p′L

and plays according to σ∗(t̂), where t̂ ∈ T̂ = {t | (ω(t), θ(t)) =

(ωL, θL)}, otherwise.

It proves convenient to define first two strategies that, with a direct mechanism, could

be interpreted as a “lie” by a set of deviating types and as “honesty” or truthtelling by

all others. For types in T ′, define the “lie” `′T ′ : T ′ → ∆(T ) such that, for every t′ ∈ T ′,
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`′T ′({t′} | t′) = pL
p′L

, and `′T ′(T̂ | t′) = 1 − pL
p′L

. Let the function hT\T ′ : T \ T ′ → ∆(T ) be

such that for all t ∈ T \ T ′, hT\T ′({t} | t) = 1. Observe that the pair (`′T ′ , hT\T ′) induces,

for each δ ∈ ∆(T ), an announced cross-sectional distribution of types δ̄(δ) with

δ̄(T̃ | δ) =

∫
t′∈T ′

`′T ′(T̃ | t′)dδ(t′) +

∫
t∈T\T ′

hT\T ′(T̃ | t)dδ(t) , (25)

for any subset T̃ of T .

With reference to `′T ′ we now define a strategy σ′T ′ for the game induced by mechanism

M in the following way: for every t′ ∈ T ′ and every subset A′ of A, let

σ′T ′(A
′ | t′) =

∫
t̂∈T

σ∗(A′ | t̂) d`′T ′(t̂ | t′) . (26)

This construction ensures that, for every δ, the distribution of actions that results if

individuals with types in T ′ behave according to σ′T ′ and all others follow σ∗T\T ′ equals

the distribution of actions that results if all individuals follow σ∗ and the distribution of

types equals δ̄(δ). Formally, for every δ,

α(δ̄(δ), σ∗) = α(δ, (σ∗T\T ′ , σ
′
T ′)) . (27)

To see that this is true, note that for any subset A′ of A,

α(A′ | δ̄(δ), σ∗)
=
∫
t′∈T σ

∗(A′ | t′)dδ̄(t | δ)
=
∫
t′∈T σ

∗(A′ | t′)d
(∫

t∈T ′ `
′
T ′(t

′ | t)dδ(t) +
∫
t∈T\T ′ hT\T ′(t

′ | t)dδ(t)
)

=
∫
t∈T ′

∫
t′∈T σ

∗(A′ | t′)d`′T ′(t′ | t) dδ(t) +
∫
t∈T\T ′

∫
t′∈T σ

∗(A′ | t′)dhT\T ′(t′ | t) dδ(t)
=
∫
t∈T ′ σ

′
T ′(A

′ | t) dδ(t) +
∫
t∈T\T ′ σ

∗
T\T ′(A

′ | t) dδ(t)
= α(A′ | δ, (σ∗T\T ′ , σ′T ′)) .

Step 2: Consider a specific type space

Consider a type space with a belief system so that, for some δ such that s(δ) = (fH , pH , p
′
L),

β({δ} | t) = 1, for all t. The distribution of types δ̄(δ) that is communicated to the mech-

anism if types in T ′ behave according to σ′T ′ and types in T \T ′ behave according to σ∗T\T ′ ,

therefore is such that

s(δ̄(δ)) = (fH , pH , pL) , (28)

with probability 1.
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Step 3: Show that, on this type space, the deviation makes the deviators

better off

By equations (12) and (13), given the strategy (σ∗T\T ′ , σ
′
T ′), the expected payoff of a type

t′ ∈ T ′ equals

Π(t′) :=
pL
p′L
V (s(δ̄(δ)), ω(t′), θ(t′)) +

(
1− pL

p′L

)
Φ(t′) ,

where

Φ(t′) := E

[
θ(t′)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ω(t̂), θ(t̂)))− y(s(δ̄(δ)), ω(t̂), θ(t̂)))

ω(t′)
| t̂ ∈ T̂

]
.

By Proposition 1, robust implementability of a social choice function as an interim Nash

equilibrium implies individual incentive compatibility of a social choice function. As we

observed in Section 3, this in turn implies that, for any s, c and y may depend on ω,

but not on θ. Also, note that, by construction of the set T̂ , types in T ′ choose only

actions that communicate their skill level truthfully to the mechanism. Hence, Φ(t′) =

V (s(δ̄(δ)), ω(t′), θ(t′)) so that so that, for every t′ in T ′,

Π(t′) = V (s(δ̄(δ)), ω(t′), (t′)) .

This observation in conjunction with equations (24) and (28) implies that types in T ′ are

made strictly better off by this deviation.

Step 4: Show that, on this type space, (σ∗T\T ′ , σ
′
T ′) is an interim Nash equilib-

rium

Consider an alternative type space with a belief system so that, for all t,

β({δ | s(δ) = (fH , pL, pH)} | t) = 1 .

Since σ∗ robustly implements the given social choice function, behaving according to σ∗(t)

is a best response for every type t, given these beliefs. Since, for any s, c and y may depend

on ω, but not on θ, behaving according to σ∗(t̂), for some t̂ ∈ T̂ is also a best response

for an individual with type t′ ∈ T ′.
But this implies that behaving according to (σ∗T\T ′ , σ

′
T ′) is also a best response for each

type t under the assumption made in Step 2, namely that the type space is such that

β({δ | s(δ) = (fH , p
′
L, pH)} | t) = β({δ | s(δ̄(δ)) = (fH , pL, pH)} | t) = 1 ,

which implies that the deviation satisfies (28).

Step 5: Show that, on this type space, the deviation is subcoalition-proof

The deviating individuals have the same preferences, (ω(t′), θ(t′)) = (ωL, θH), for all

t′ ∈ T ′, and the same beliefs, by the assumptions made in Step 2. Hence, there exists no

strict subset of T ′ which could undermine the subcoalition-proofness of the deviation σ′T ′ .
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A.3 Proof of Proposition 5

Given a measurable space (T, T ) and a function π = (w, θ) : T 7→ Ω×Θ, and given a social

choice function (q, c, y) ∈ Ω(ε), we construct a direct mechanism M = [(T, T ), Q, C, Y ] so

that, for all δ ∈ ∆(T ) and all t ∈ T ,

Q(δ) = q(s(δ)), C(δ, t) = c(s(δ), ω(t)), and Y (δ, t) = y(s(δ), ω(t)) . (29)

This construction ensures that the mechanism achieves the social choice function in a

truthtelling equilibrium. More formally, the strategy h : T → ∆(T ) with h({t} | t) = 1,

for all t, is interim Nash equilibrium of the game induced by this mechanism, for every

belief system β. This was shown in the proof of Proposition 1. In the following, we seek

to show that this equilibrium is coalition-proof on every type space with a moderately

uninformative belief system β.

Step 1: No deviations that involve lies about skills

Suppose there is a set of types T ′ who deviate from h and instead behave according to a

lie `′T ′ : T ′ → ∆(T ). We say that such a lie involves lies about skills if there is t′ ∈ T ′ so

that

l(ω̂ | t′) := `′T ′({t̂ | ω(t̂) 6= ω(t′)} | t′) > 0 . (30)

We show in the following that any such deviation violates condition (a) in Definition 1

and therefore does not challenge the coalition-proofness of the truthtelling equilibrium.

Let δ̄(δ) ∈ ∆(T ) (see the definition in equation (25)) be the cross-section distribution

of types that is communicated to the mechanism if types in T ′ behave according to `′T ′

and types in T \ T ′ behave according to hT\T ′ .

Given that (29) holds, the expected payoff of an individual with a type t′ ∈ T ′ whose

behavior satisfies (30) can be written as∫
∆(T )

l(ω̂ | t′)
{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ω̂))− y(s(δ̄(δ)),ω̂)

ω(t)

}
+(1− l(ω̂ | t′))

{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ω(t))− y(s(δ̄(δ)),ω(t))

ω(t)
)
}
dβ(δ | t) ,

(31)

where ω̂ 6= ω(t).

Now suppose that the individual in question would instead communicate his skill level

truthfully with probability 1. The resulting payoff equals∫
∆(T )

{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ω(t))− y(s(δ̄(δ)),ω(t))

ω(t)

}
dβ(δ | t) . (32)

By the constraints in (18) we have that

θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ω(t)))− y(s(δ̄(δ)),ω(t))
ω(t)

> θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ω̂)− y(s(δ̄(δ)),ω̂)
ω(t)

,

which implies that the expression in (32) is strictly larger than the expression in (31).

This shows that, for a type t′ ∈ T ′, behaving in such a way that (30) holds is not a best

response. Hence, (hT\T ′ , `
′
T ′) is not an interim Nash equilibrium strategy.
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Step 2: No deviation so that all participating individuals have the same pref-

erences

Suppose the deviating set of types T ′ is such that t′ ∈ T ′ and t̂′ ∈ T ′ imply that π(t′) =

π(t̂′). For the sake of concreteness, assume that π(t′) = (ωH , θL) for all t′ ∈ T ′. We

know by Step 1 that there is no deviation that involves lies about skills and challenges

the coalition-proofness of equilibrium h. Hence, suppose that all participating individuals

truthfully communicate their skills

`′T ′({t̂ | ω(t̂) 6= ω(t′)} | t′) = 0 , (33)

and that some lie about their preference parameter with positive probability,

`′T ′({t̂ | θ(t̂) = θH} | t′) > 0 . (34)

Consequently, for every δ, s(δ) = (fH(δ), pH(δ), pL(δ)) and s(δ̄(δ)) = (fH(δ̄(δ)), pH(δ̄(δ)), pL(δ̄(δ)))

are such that

fH(δ) = fH(δ̄(δ)), pH(δ) < pH(δ̄(δ)) and pL(δ) = pL(δ̄(δ)) .

Since the given social choice function satisfies the monotonicity constraint

∂V (s, ωH , θL)

∂pH
≤ 0 ,

this deviation will fail to make the participating types better off, i.e., it violates condi-

tion (b) in Definition 1, and therefore does not challenge the coalition-proofness of the

truthtelling equilibrium.

Step 3: No deviation with heterogeneous preferences

Now suppose that the deviating set of types T ′ is such that there are t′ ∈ T ′ and t̂′ ∈ T ′

so that π(t′) 6= π(t̂′). Again, we may assume that the deviation involves no lies about

skills so that (33) holds. Consequently, we have for all δ that fH(δ) = fH(δ̄(δ)).

Assume, for the sake of concreteness, that there is T ′′ ⊂ T ′ so that t′′ ∈ T ′′ implies

that π(t′′) = (ωH , θL) and that these individuals lie about their preference parameter with

positive probability,

`′T ′({t̂ | θ(t̂) = θH} | t′′) > 0 . (35)

Given that the monotonicity constraint

∂V (fH , pH , pL, ωH , θL)

∂pH
≤ 0 ,

holds, these types will benefit from the deviation `′T ′ only if there is a subset D of ∆(T )

with β(D | t′) > 0 for all t′ ∈ T ′ with π(t′) = (ωH , θL), which has the following property:

δ ∈ D implies that

pL(δ) 6= pL(δ̄(δ)) , or pH(δ) > pH(δ̄(δ)) .
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Since we have limited information to type spaces with moderately uninformative belief

systems, β(D | t′) > 0 for all t′ ∈ T ′ with π(t′) = (ωH , θL) implies in fact that β(D | t′) > 0

for all t′ ∈ T ′, i.e., all participants of the deviation assign positive probability mass to the

set D.

Suppose that the set D is such that pH(δ) > pH(δ̄(δ)), for all δ ∈ D. (The alternative

cases so that δ ∈ D implies pL(δ) < pL(δ̄(δ)) or pL(δ) > pL(δ̄(δ)) can be treated in exactly

the same way.) This implies that the set T ′ includes high-skilled individuals with a high

preference for public goods who announce a low preference with positive probability: there

is T̂ ′′ ⊂ T ′ so that t̂′′ ∈ T̂ ′′ π(t̂′′) = (ωH , θH), and

`′T ′({t̂ | θ(t̂) = θL} | t̂′′) > 0 . (36)

The assumptions that, for every s, at most one of the monotonicity constraints in

Proposition 3 is binding and that the belief system is moderately uninformative have the

following implication: there is a subset D̃ of D so that β(D̃ | t′) > 0 for all t′ ∈ T ′, and

conditional on δ ∈ D̃, types in T ′′ or types in T̂ ′′ are made strictly better off if they reduce

the probability of a lie, taking the behavior of all other individuals as given. To see this,

suppose first that types in T̂ ′′ change their behavior and now follow a strategy `′′
T̂ ′′

with

`′′
T̂ ′′

({t̂ | θ(t̂) = θL} | t̂′′) < `′T ′({t̂ | θ(t̂) = θL} | t̂′′) . (37)

Let δ̂(δ) be the cross-section distribution of types that is communicated to the mechanism

given that the true cross-section distribution of types is δ and that individuals behave

according to the strategy profile (hT\T ′ , `
′
T ′\T̂ ′′ , `

′′
T̂ ′′

). We have that, for all δ ∈ ∆(T ),

pH(δ̂(δ)) > pH(δ̄(δ)) and pL(δ̂(δ)) = pL(δ̄(δ)) .

Given that the monotonicity constraint

∂V (s, ωH , θH)

∂pH
≥ 0 , (38)

holds, for all s, the outcome of this deviation makes all types in T̂ ′′ weakly better off. It

makes them also strictly better off, provided that there is a subset D̃ with β(D̃ | t′) >
0 so that (38) holds as a strict inequality. Finally, observe that (hT\T ′ , `

′
T ′\T̂ ′′ , `

′′
T̂ ′′

) is

an interim Nash equilibrium strategy because individuals communicate their skill levels

truthfully and, individual outcomes do not depend on announced preference parameters

(see equation (29)). Hence, if there is a subset D̃ of D with β(D̃ | t′) > 0 so that so that

(38) holds as a strict inequality, the deviation `′T ′ fails to be subcoalition-proof.

Now assume that there is no such set D̃. Then, since for every s at most one mono-

tonicity constraints in Proposition 3 is binding, it has to be the case that the monotonicity

constraint ∂V (s,ωH ,θL)
∂pH

≤ 0 holds as a strict inequality with probability 1, conditional on

the event δ ∈ D. But this implies that now individuals with types in T ′′ benefit from

reducing the probability of a lie. Again, this implies that `′T ′ fails to be subcoalition-proof.
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A.4 Proof of Proposition 6

We use optimal control theory in order to characterize the solution to the optimization

problem in the body of text. Specifically, we treat q and vL as states variables. The

control variables u1 and u2 are equal to q′ and v′L; that is, they satisfy the following

equations of motion,

q′ = g1(u1) , with g1(u1) = u1 , (39)

and

v′L = g2(u2) , with g2(u2) = u2 . (40)

The monotonicity constraint θHq
′ + v′L ≥ 0 can now be formulated as a constraint on the

control variables,

h(u1, u2) ≥ 0 , where h(u1, u2) = θHu1 + u2 . (41)

The optimality conditions for this problem can be conveniently stated by making use of

the following Hamiltonian

H(q, vL, u1, u2) = θ̄(pL)q + fHVH(vL, r(q)) + (1− fH)vL + µ1g1(u1) + µ2g2(u2) ,

where µ1 is the costate variable associated with (39) and µ2 is the costate variable asso-

ciated with (40); and of the Lagrangean

L(q, vL, u1, u2) = H(q, vL, u1, u2) + νh(u1, u2) ,

where ν ≥ 0, is the multiplier associated with (41). The optimality conditions are as

follows:38 (i) The costate variables satisfy

µ′1 = −∂H
∂q

and µ′2 = − ∂H
∂vL

, (42)

or, equivalently,

µ′1 = −(θ̄ + fHVH2 r
′(q)) (43)

and

µ′2 = −(fHVH1 + 1− fH) . (44)

(ii) The fact that we have free start values for the state variables q and vL implies that39

µ1(0) = µ1(1) = 0 and µ2(0) = µ2(1) = 0 . (45)

38For a derivation of these optimality conditions, see Kamien and Schwartz (1991), pp. 195-197. These

conditions are necessary and sufficient provided that the Lagrangean L is concave in (q, vL, u1, u2). Since

it is linear in u1, and u2, this follows from the fact that VH is a concave function of vL and r(q); see

Proposition 1 in Bierbrauer and Boyer (2010).
39The end values are not free. It can be shown that the optimality conditions pin down the paths of

the state and control variables in a way that the yields a particular end value of the state variables.
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(iii) The control variables satisfy the following first order and complementary slackness

conditions:

∂L
∂u1

= 0 and
∂L
∂u2

= 0 , (46)

and

ν ≥ 0 , and νh(u1, u2) = 0 . (47)

Equations (46) can equivalently be written as

µ1 + νθH = 0 , (48)

and

µ2 + ν = 0 . (49)

Step 1: Derivation of the optimality conditions in the body of text, i.e., of

equations (19) and (20)

Equations (45), (48), and (49) imply that

ν(0) = ν(1) = 0 . (50)

Equations (48) and (49) also imply that

µ′1 = − 1

θH
ν ′ , (51)

and

µ′2 = −ν ′ . (52)

Using (51) and (52) in conjunction with (43) and (44) yields

1

θH
(θ̄ + fHVH2 r

′(q)) = fHVH1 + 1− fH , (53)

which is equal to equation (19) in the body of the text. To also derive (20), note that

equations (50) and (52) imply that ν(1) − ν(0) = −
∫ 1

0
µ′2(pL)dpL = 0. Combining this

with (44) yields∫ 1

0

{fHVH1(vL(pL), r(q(pL))) + 1− fH}dpL = 0 .
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Step 2: Implications of the optimality conditions

The proof of Proposition 6 is based on three Lemmas.

Lemma 1 Let pL = 1− fH
1−fH

pH , then condition (53) implies that r′ (q (pL)) = θHωL.

Proof We first note that the function VH introduced in Step 1 has the following prop-

erty,40

VH2 =
VH1

ωL
− 1

ωH
. (54)

Now suppose that the Lemma is false. Then we have r′(q) 6= θHωL. Using the

optimality condition (53), we may solve for r′(q) and state this equivalently as

θ̄ − θH(fHVH1 + 1− fH) 6= −θHωLfHVH2 .

Using (54) to substitute for VH2, we can rewrite this condition once more as θ̄
λ
6= θHωL.

However, pL = 1− fH
1−fH

pH implies that θ̄ = θH(1−fH)+θLfH and also that θ̄
λ

= θHωL.

Hence, the assumption that the Lemma is false has led to a contradiction.

�

Lemma 2 For all pL ∈ (0, 1), q′(pL) > 0.

Proof If we totally differentiate equation (53) with respect to pL, we obtain

θ̄′ = fH (VH11v
′
L + VH21r

′q′ − (VH21v
′
L + VH22r

′q′)r′ − VH2r
′′)

Suppose first that constraint (41) is binding, then this can be equivalently written as

θ̄′ = −fH (Q+ VH2r
′′) q′ ,

where Q := VH11θ
2
H − 2VH12θHr

′ + VH22(r′)2 is a quadratic form which is non-positive

because the function VH is concave, as follows from Proposition 1 and Lemma 12 in

Bierbrauer and Boyer (2010). Using that VH2 < 0 (again, see Bierbrauer and Boyer

(2010), Lemma 12), and that r′′ > 0 establishes the result.

If the constraint (41) is not binding, then the optimal policy is equal to the Mirrleesian

policy characterized in Proposition 2. It follows from this Proposition that the Mirrleesian

policy is also such that q′(pL) > 0. �

40See Lemma 12 of Bierbrauer and Boyer (2010).
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Lemma 3 For pL ∈ (1 − fH
1−fH

pH , 1), ν ′′(pL) < 0; for pL = 1 − fH
1−fH

pH , ν ′′(pL) = 0; for

pL ∈ (0, 1− fH
1−fH

pH), ν ′′(pL) ≥ 0, with a strict inequality if constraint (41) is binding.

Proof Optimality conditions (52) and (44) imply that ν ′ = fHVH1 + 1− fH . Hence,

ν ′′ = fHVH11v
′
L + fHVH12r

′(q)q′

If constraint (41) is binding, this can be equivalently written as

ν ′′ = q′(−fHVH11θH + fHVH12r
′(q)) .

Since (54) implies that VH12 = 1
ωL
VH11, we can rewrite this as

ν ′′ = −fHVH11
1

ωL
q′(θHωL − r′(q)) . (55)

It follows from Lemmas 1 and 2 that (i) q′(θHωL − r′(q)) < 0, if pL > 1 − fH
1−fH

pH , (ii)

that q′(θHωL − r′(q)) = 0, if pL = 1 − fH
1−fH

pH and (iii) that q′(θHωL − r′(q)) > 0, if

pL < 1− fH
1−fH

pH . Moreover, it is shown in Proposition 1 of Bierbrauer and Boyer (2010)

that VH11 ≤ 0. Consequently, (55) implies (i) that ν ′′ < 0 if constraint (41) binds and

pL > 1− fH
1−fH

pH , (ii) that ν ′′ > 0 if constraint (41) binds and pL < 1− fH
1−fH

pH and (iii)

that ν ′′ = 0 if pL = 1− fH
1−fH

pH .

It has to be the case that (41) binds if pL > 1− fH
1−fH

pH . Suppose otherwise: then the

solution to the policy problem coincides with the Mirrleesian policy. This policy is not

coalition-proof whenever pL > 1− fH
1−fH

pH , a contradiction.

If constraint (41) does not bind for a subset of (0, 1− fH
1−fH

pH), then ν ′ = ν ′′ = 0 over

this range.

�

Step 3: Completing the proof of Proposition 6

Since ν ′ = fHVH1 + 1− fH = 1
θH

(θ̄ + fHVH2 r
′(q)), the proof is complete, if we show that

there are cutoff values γ1 and γ2 with γ1 < γ2 < 1 so that pL ∈ (γ1, γ2) implies ν ′ > 0 and

pL > γ2 implies ν ′ < 0.

We know that ν(pL) > 0 for pL > 1 − fH
1−fH

pH . Suppose first that ν(pL) = 0 for

all pL ≤ 1 − fH
1−fH

pH . Then Lemma 3 implies that ν ′′ < 0 for pL > 1 − fH
1−fH

pH and

ν = ν ′ = ν ′′ = 0, otherwise. Given that
∫
ν ′dpL = 0, it has to be the case that there exist

γ1 and γ2 with 1− fH
1−fH

pH = γ1 so that pL ∈ (γ1, γ2) implies ν ′ > 0 and pL > γ2 implies

ν ′ < 0.

Now suppose that ν(pL) > 0 for some pL < 1 − fH
1−fH

pH . Consider the smallest pL

with this property and denote it by p
L
. Since ν(0) = 0, it must be true that ν ′(p

L
) > 0.
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By Lemma 3 we also have ν ′′ > 0, for all pL ∈ (p
L
, 1 − fH

1−fH
pH). Hence ν ′ > 0, for all

pL ∈ (p
L
, 1− fH

1−fH
pH). At pL = 1− fH

1−fH
pH , ν ′ starts to fall, and because of

∫
ν ′dpL = 0

it must eventually become negative.

A.5 The optimal robust and coalition-proof policy if pH is un-

known

We assume that pL is known, but that there is a shock to the preferences of the high-skilled,

so that pH has to be elicited from reports of high-skilled individuals about their public-

goods preferences. The policy problem, henceforth referred to as Problem PH(pL, fH),

can be stated as follows: choose the functions q : pH 7→ q(pH) and vL : pH 7→ vL(pH) in

order to maximize∫ 1

0

{θ̄(pH)q(pH) + fHVH(vL(pH), r(q(pH))) + (1− fH)vL(pH)}dpH

subject to the constraint, that for all pL,

θLq
′(pH) +

d

dpH
VH(vL(pH), r(q(pH))) ≤ 0 .

The constraint ensures that the utility of high-skilled individuals with a low valuation

of public goods does not increase if more high-skilled individuals communicate a high

valuation of public goods. The following Proposition characterizes the solution to Problem

PH(pL, fH). It is the mirror image of Proposition 6, i.e., it follows from exactly the same

reasoning, so that we can omit a formal proof. Again, the main observation is that the

tax system and the public-goods provision are always distorted in the same direction,

with upward distortions occurring if the demand for public goods is high, and downward

distortions if the demand for public goods is low.

Proposition 7 The solution to Problem PH(pL, fH) has the following properties. There

are cutoff values η1 and η2 with 0 < η1 < η2 ≤ 1 such that:

(a) For pH ≥ η2, the solution to PH(pL, fH) coincides with the Mirrleesian policy.

(b) For pH < η1, marginal income taxes, direct transfers to the low-skilled and public-

goods provision levels are distorted downwards.

(c) For pH ∈ (η1, η2), marginal income taxes, direct transfers to the low-skilled and

public-goods provision levels are distorted upwards.

Figure 8 illustrates the optimal tax and expenditure policy under the assumptions that

u(c) =
√
c and that r(q) = 1

2
q2. Moreover, we assume that fH = pL = 1

2
. The figure

illustrates how the public-goods provision, the net tax payment of the low-skilled, their
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marginal income tax rates, and the distortion relative to the Mirrleesian policy vary with

pH . The measure of the distortion is now given by fH + 1−fH
VH1

.41 Hence, an upward dis-

tortion corresponds to a situation where 1
VH1

> −1. The figure illustrates once more that

there is a comparatively large range of parameters, where increases of public expenditures

are associated with a tax system that becomes more redistributive and distortionary, and

a comparatively small range of parameters where higher expenditures go together with

reduced transfers and smaller distortions.

Insert Figure 8 here

B Figures

41It is convenient to measure the distortion in this way because of the optimality condition∫ 1

0

{
fH + 1−fH

VH1

}
dpH = 0 , which is the the analog to equation (20) above.
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Figure 1: Public-good provision levels, marginal income taxes of the low-skilled and net

tax payments of the low-skilled, respectively, as a function of the share of low-skilled indi-

viduals with a high valuation of public goods.
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Figure 2: Public-good provision levels, marginal income taxes of the low-skilled and net

tax payments of the low-skilled, respectively, as a function of the population share of high-

skilled individuals.
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Figure 3: Public-good provision levels, and utility of low-skilled individuals with a high

valuation of public goods as a function of pL, i.e., the share of low-skilled individuals with

a high valuation of public goods.
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Figure 4: State-dependent redistribution
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Figure 5: The non-direct mechanism
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Figure 6: Violation of coalition-proofness

6

- pH

pL

1

0 1

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

θ̄(s)
λ(s)

= θHωLp p p

∂V ∗(s,ωL,θH)
∂pL

≥ 0

violated

∂V ∗(s,ωH ,θL)
∂pH

≤ 0

violated

53



Figure 7: Optimal policy if pL is unknown. Thin lines represent the Mirrleesian policy

and fat lines represent the optimal coalition-proof policy.
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Figure 8: Optimal policy if pH is unknown. Thin lines represent the Mirrleesian policy

and fat lines represent the optimal coalition-proof policy.
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