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Abstract

Active interest rate policy is frequently recommended based on its merits in re-
ducing macroeconomic volatility and being a simple and transparent policy device.
In a standard New Keynesian model, we show that an even simpler policy, namely
an interest rate peg, can be welfare enhancing: The minimum state variable solution
and an autoregessive solution under a peg can lead to lower welfare losses than the
unique solution under an active interest rate rule. Given that a peg is usually blamed
to facilitate endogenous fluctuations, we further show that a peg can be implemented
in a way that ensures equilibrium determinacy.

1 Introduction

Recent macroeconomic research on monetary policy, which is based on New Keynesian
models, has led to a simple advice for central bankers: Interest rates should be set in an
active way. Though this device for interest rate setting is not exactly implied by welfare-
maximization, it is commonly viewed as a useful short-cut for the latter. By raising
the nominal interest rate by more than one for one in case inflation is (expected to be)
increasing, the real interest rate rises causing agents to save more and to consume less
such that aggregate demand and firms’ costs decline. By applying this strategy, monetary
policy can stabilize prices, which reduces welfare costs of imperfect price adjustments.

Theoretical analysis of monetary policy has further shown that this is not the main
virtue of an active policy: It rules out the possibility of multiple equilibria and thereby
endogenous fluctuations (see Benhabib, Schmitt-Grohe, and Uribe (2001), or Woodford
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(2003)). Due to this property, an active interest rate setting is widely viewed as a pre-
requisite for macroeconomic stability. Consequently, passive policies are usually dismissed
given that they in principle allow for self-fulfilling expectations, or, sunspot equilibria.
However, this view on active vs. passive policies is not necessarily justified on welfare
grounds, since both types of policies are not derived from a welfare maximizing policy
plan.

This paper takes a closer look at the welfare effects of simple policy rules. Thereby,
we consider a prominent (passive) monetary policy regime, namely a peg, which is banned
from the recent literature, probably due to its failure to guarantee equilibrium uniqueness.1

A welfare comparison in the workhorse macro model (a standard New Keynesian model)
surprisingly shows that a peg can outperform a simple active interest rate rule. This result
holds for the minimum state variable solution under a peg as well as for an autoregressive
solution, where lagged inflation rates serve as an endogenous state variable. Finally, we
demonstrate that a peg can be implemented by the central bank in a way that ensures the
existence of a unique solution, i.e. it can uniquely implement the autoregressive solution
or the minimum state variable solution under a peg. While the main purpose of the
paper is to demonstrate that some simple rules are better (or worse) than one commonly
thinks, the analysis also contributes to the debate on the alleged problems associated with
constant interest rate projections (see Honkapohja and Mitra (2005a), and Galí (2007)).

The remainder is organized as follows. Section 2 presents the framework, introduces
different policy specifications, and derives welfare effects. Section 3 demonstrates how an
equilibrium under a peg can be implemented in a unique way. Section 4 concludes.

2 A consensus model

Consider the following simple New Keynesian model, which can be derived from a mi-
crofounded sticky price framework and is for example also applied in Clarida, Gali, and
Gertler (1999):

πt= βEtπt+1 + κxt + ut, (1)

xt=Etxt+1 −
1

σ
Rt +

1

σ
Etπt+1,

ut= ρut−1 + εt, ρ ∈ (0, 1),

where πt denotes the gross inflation rate, xt the output-gap, Rt the gross interest rate, and
ut an autoregressive cost push shock. εt is i.i.d. with Et−1εt = 0 and a constant variance
σ2ε. All variables are expressed in terms of percentage deviations from their respective
values at an efficient steady state (see Woodford (2003)). The composite coefficient κ of
the Phillips curve is defined as κ = (1− φ)(1− φβ)(σ + η)/φ where β is the household’s

1An exception is the recent discussion on the usefulness of constant interest rate projections (Honkapohja
and Mitra (2005b) and Galí (2007)).
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constant discount factor, 1/σ the elasticity of intertemporal substitution, 1/η the Frisch
labor supply elasticity, and φ the fraction of firms that do not adjust their prices in each
period.

Monetary policy is specified in form of simple feedback rules for the nominal interest
rate. We thus refrain from deriving an optimal monetary policy. In particular, we consider
three different simple rules for monetary policy: i.) The rule proposed by Taylor (1993),
ii.) an active interest rate policy that is consistent with monetary policy acting under
discretion, and iii.) an interest rate peg.

2.1 Solutions under different simple rules

Following common practice, we restrict our attention to convergent equilibrium sequences.
The model is simple enough to derive closed form solutions.

An active interest rate policy can be described with interest rate rules of the form

Rt = wππt + wxxt, (2)

where wπ > 1 and wx ≥ 0. Specifically, the feedback coefficients equal wπ = 1.5 and
wx = 0.5 in case of the Taylor rule, and wπ = ρ+ (1− ρ)σε and wx = 0 in the case of a
simple active rule consistent with discretionary policy (see appendix A.1). In both cases,
the model given in (1) can be reduced to the two-dimensional system

πt= βEtπt+1 + κxt + ut

xt=Etxt+1 −
wπ

σ
πt −

wx

σ
xt +

1

σ
Etπt+1

It is well-known that this system exhibits exactly one solution when wπ > 1 and wx ≥ 0
(since the system then exhibits two unstable eigenvalues) which allows for convergent equi-
librium sequences only if the solution exhibits no history dependence (see e.g. Woodford
(2001)). Thus, we know that both simple rules will lead to a linear solution of the following
form

πt = auut, xt = buut.

Using the method of undetermined coefficients the coefficients au and bu of this minimum
state variable (MSV) solution can easily be derived:

au =
σ
¡
1− ρ+ wx

σ

¢
σ (1− βρ)

¡
1− ρ+ wx

σ

¢
+ κ (wπ − ρ)

, bu = −
au
σ

wπ − ρ

1− ρ+ wx
σ

.

An interest rate peg, i.e. a policy characterized by keeping the nominal interest rate
at its long run efficient level (R̄ = 1/β > 1): Rt = 0, leads to the following conditions for
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the equilibrium sequences of inflation and the output-gap:

πt= βEtπt+1 + κxt + ut,

xt=Etxt+1 +
1

σ
Etπt+1.

It is well known that this policy gives rise to multiple equilibrium solutions. Precisely,
equilibrium conditions can be solved by other solutions than the MSV solution, since under
a peg there exist one stable and one unstable eigenvalue. Hence, there exist additional
stable solutions that exhibit endogenous state variables.

One type of solution features artificial state variables (like past expectations of to-
day’s non-predetermined variables, Et−1πt or Et−1yt ). These solutions are well-known
to support the existence of sunspot-equilibria, where arbitrary changes in expectations
(non-fundamental shocks) can affect macroeconomic variables. Here, we disregard these
types of solutions and exclusively apply "well-behaved" solutions, namely, the MSV solu-
tion and an autoregressive (AR) solution. By construction, both cannot support sunspot
equilibria, i.e., welfare reducing endogenous fluctuations.

1. Minimum state solution: As the first type of solution we consider the MSV solution
under the peg, which takes the form

πt = apegu ut, xt = bpegu ut.

Applying the method of undetermined coefficients delivers

apegu =
1− ρ

κ

∙
(1− ρ)(1− βρ)

1

κ
− ρ

σ

¸−1
, (3)

bpegu =
au
κ
(1− βρ)− 1

κ
.

2. Autoregressive solution: As the second type of solution we consider an AR solution,
where lagged inflation serves as an additional state variable. The solution form is
given by

πt= aππt−1 + apeg,ARu ut, (4)

xt= bππt−1 + bpeg,ARu ut,
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where the method of undetermined coefficients yields

aπ =
1 + κ

σ

2β
+
1

2
−

sµ
1 + κ

σ

2β
+
1

2

¶2
− 1

β
, bπ =

aπ
κ
− β

κ
a2π, (5)

apeg,ARu =
1− ρ

κ

∙
(1− ρ)(1− βρ)

1

κ
− β(1− ρ)aπ

κ
− ρ

σ
− aπ

σ
− bπ

¸−1
,

bpeg,ARu =
au
κ
(1− βρ)− β

κ
aπau −

1

κ
.

Note that one of the two solutions for aπ lies inside the unit circle, while the other
lies outside the unit circle. A stable solution requires to pick the stable solution for
aπ, which — since

1+κ
σ

2β > 1
2 — must contain the root with a negative sign.

2.2 Welfare effects

In this section we compute welfare effects under the alternative policies and solutions. Fol-
lowing large parts of the literature, we apply a second order approximation of household
welfare of the underlying model with optimizing agents. In particular, we adopt Wood-
ford’s (2003) approach, leading to a quadratic loss function that measures welfare losses
of deviations from an efficient steady state (where long run distortions are eliminated by
fiscal transfer and long-run price stability is ensured by an inflation target equal to one):

L = −E0
∞X
t=0

βt(π2t + λx2t ) = −
1

1− β
(V ar π + λV ar x) , (6)

where we assumed that the economy is initially in its steady state and we used that the
equilibrium sequences under all solutions are covariance stationary. V ar π then denotes
the unconditional variance (here, conditional on the information available at the beginning
of period 0) of πt. The weight on output gap fluctuations satisfies λ = κ/�, where � is
the price elasticity that price setting firms face (see Woodford (2003)). The unconditional
variances are given by

V ar π=
1

1− a2π

£
a2uV ar u+ 2aπauCov(u, π)

¤
,

V ar x= b2πV arπ + b2uV ar u+ 2bπbuCov(u, π),

where V ar u = 1
1−ρσ

2
ε and Cov(u, π) = au

ρ
(1−ρ2)(1−aπρ)σ

2
ε (see appendix A.2). For the

computation of the variances we apply a set of standard parameter values given in table
1, which lead to κ = 0.1717 and λ = 0.029. The normalization of σ2ε does evidently
not affect the relative welfare effects. These parameter values lead to a policy rule under
discretionary optimization that is characterized by wπ = 1.5 (and wx = 0). For this
benchmark calibration we obtain the following results for the solutions and the variances
under different rules:
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Taylor rule: πt = 3.563ut, xt = −3.563ut

V ar π = 66.814, V ar x = 66.814, and LTaylor = −6872.52.

Policy under discretion, wπ = 1.5: πt = 0.878ut, xt = −5.268ut

V ar π = 4.057, V ar x = 146.05 ; and Lactive = −823.56.

Interest rate peg MSV: πt = 0.696ut, xt = −6.267ut,

V ar π = 2.552, V ar x = 206.739, and Lpeg,MSV = −846.74.

Interest rate peg AR: πt = 0.665πt−1 − 0.182ut, xt = 1.323πt−1 − 5.244ut,

V ar π = 1.241, V ar x = 176.639, and Lpeg,AR = −629.45.

The results show that the Taylor rule yields the worst welfare result, which is due to
the most effective output gap stabilization that comes at the cost of the highest inflation
variance. Evidently, an active policy under discretionary optimization performs much
better than the Taylor rule. The MSV solution under the peg leads to an even lower
inflation variance, but slightly higher welfare losses caused by a less stabilized output
gap. Notably, the AR solution under the peg clearly leads to the lowest welfare losses,
which is mainly due to the smallest inflation variance. The latter property is hardly
surprising, since inflation under the AR solution exhibits inertia that helps to smooth
inflation fluctuations.2

Yet, this welfare ranking is by far not robust to changes of parameter values, as can be
seen in table 2. Most of all, the degree of autocorrelation of the exogenous state (i.e. the
cost push shock) matters for the relative welfare effects. As argued above, an additional
state variable (πt−1) can contribute to less volatile sequences of macroeconomic variables
(here, in particular, inflation). However, additional state variables extend the state space
and thus the support of the variables, which tends to raise unconditional variances. As
long as the autocorrelation ρ of the exogenous state is large, the latter effect will be less
important. But, for smaller values of ρ, here ρ ≤ 0.8 (see table 2), welfare losses can be
higher for the AR solution than for the active policy under discretion (wπ = ρ+(1− ρ)σε

and wx = 0). For a high value of ρ (ρ = 0.95), both solutions under the peg outperform
both active policies.

Finally, variations of the elasticity of intertemporal substitution and of the degree of
price stickiness show that the relative performance of the solutions also depends on the

2Under both solutions to the peg, a cost push shock causes output and inflation to decrease. This
outcome can differ from the transmission of cost push shocks under solutions with artificial state variables,
where inflation rises and — due to a lower real interest rate — output too. Such a solution is known to
support self-fulfilling inflation expectations.
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relative welfare costs of output and inflation fluctuations. Lowering the fraction of non-
price-adjusting firms (φ = 0.7) tends to lower welfare losses in general. Then, aggressive
(active) responses to changes in inflation are less desirable, such that even the MSV solu-
tion under the peg outperforms the active discretionary policy for ρ = 0.9. If the private
sector is less willing to substitute consumption intertemporally (σ = 2), central bank
passiveness tends to lead to higher inflation and welfare losses.3

3 Uniqueness under an interest rate peg

As argued above, the two solutions analyzed for the interest rate peg are not the only
possible solutions. In particular, non-fundamental solutions (with artificial state variables)
are possible that might lead to endogenous fluctuations. A policy regime that facilitates the
latter is evidently not desirable. Thus, we aim at designing policy rules for the central bank
that implement a peg in a way that renders multiple solutions impossible. In particular,
we show that both solutions to the peg can be implemented by an appropriately designed
interest rate rule.

3.1 Minimum state solution

The MSV solution under a peg, which is characterized by πt = apegu ut and xt = bpegu ut, can
be implemented by a rule of the form (2). To implement a peg, Rt = 0, the coefficients
have to satisfy wx

wπ
= −πt

xt
. Using that the MSV solution implies πt

xt
= apegu

bpegu
, we get the

following conditions for the policy rule coefficients

wπ = α and wx = −α (apegu /bpegu )

where α is an arbitrary constant. We can easily assess the equilibrium determinacy condi-
tions of the New Keynesian model closed with this interest rate rule. The model in matrix
form is given by

Etyt+1 = Ayt +But with yt = (xt, πt)
0 and A =

Ã
0 β

σ 1

!−1Ã
−κ 1

σ + wx wπ

!

To ensure determinacy, the matrix A must exhibit two unstable eigenvalues which is
guaranteed by the three following conditions

det(A)> 1⇔ σ + wx + κwπ

σβ
> 1

det(A)− trace(A)>−1⇔ wπ + wx
1− β

κ
> 1

det(A) + trace(A)>−1⇔ κ (1 + wπ) + (2σ + wx) (1 + β) > 0

3The unconditional variances tend to rise with ρ under active policies, whereas ρ exerts an ambiguous
effect on the variances under the peg.
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Under the benchmark calibration of table 1 and, for instance, α = 1.5, these conditions
are fulfilled and the MSV solution is the unique solution. The interest rate rule then reads
Rt = 1.5πt − 0.1667xt. This rule uniquely implements sequences {Rt, xt, πt}∞t=0 satisfying
πt = apegu ut, xt = bpegu ut, and Rt = 0.

3.2 Autoregressive solution

Similarly, the autoregressive solution can uniquely be implemented by an interest rate rule
of the form4

Rt = rxxt + rππt + rlπt−1 (7)

We set the parameters in (7) so as to implement the autoregressive solution. Eliminating
πt in (7) by πt = aππt−1 + apeg,ARu ut yields Rt = rxxt + (rl + rπaπ)πt−1 + rπa

peg,AR
u ut,

which further has to imply a sequence of constant interest rates, Rt = 0. For this, we use
the output solution, xt = bππt−1 + bpeg,ARu ut ⇔ α(−xt + bππt−1 + bpeg,ARu ut) = 0 for an
arbitrary α 6= 0, which implies Rt = rxxt + (rl + rπaπ)πt−1 + rπa

peg,AR
u ut = 0 if rx = −α;

rl + rπaπ = αbπ; and rπa
peg,AR
u = αbpeg,ARu . Thus, (7) implements an interest rate peg if

(but not only if) the policy rule coefficients satisfy

rx = −α, rl = α (bπ − aπ') , rπ = α' (8)

where ' = bpeg,ARu /apeg,ARu . Setting α = 0.25, for instance and applying the parameter
values in table 1, leads to rx = −0.25, rl = −4.47, and rπ = 7.22. Eliminating the interest
rate in (1), by a policy rule satisfying (7) and (8) leads to a 3 × 3 system in xt, πt, and
πt−1. Since the latter is relevant for monetary policy, the equilibrium solution takes the
form (4). Determinacy then requires that there are two eigenvalues outside the unit circle
and one stable eigenvalue.

For α = 0.25 and the parameter values in table 1, the eigenvalues under (8) are given
by λ1 = 0.665; λ2 = λ3 = 1.080 (modulus), ensuring that the AR solution is the unique
solution.5 The single stable eigenvalue 0.665, resembles the autoregressive coefficient in
the inflation solution: πt = 0.665πt−1 − 0.182ut. Thus, the central bank can construct
an interest rate rule in a way, which implies 1) a constant interest rate (i.e. Rt = 0) and
2) unique equilibrium sequences that are identical to the equilibrium sequences under the
autoregressive solution.

4 Conclusion

This paper shows that a popular monetary policy device, namely, an active interest rate
policy (or a Taylor rule), can easily be outperformed by an even simpler monetary policy

4Galí (2007) proceeds in a similar way to implement a peg in a unique way: He induces equilibrium
determinacy in a New Keynesian model by implementing a peg with a rule, where the central bank reacts
to inflation and current and lagged output.

5Further details on the determinacy conditions are available from the authors upon request.
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strategy: an interest rate peg. While we do not seek to identify optimal policies, we want to
demonstrate that central bankers should not apply recipes just because of their appealing
simplicity. Once a policy maker departs from a fully optimal (commitment) strategy, it is
ex-ante not clear which kind of simple rule most closely resembles the outcome under the
commitment plan. To our surprise, even an interest rate peg can be more desirable (in
welfare terms) than an active interest rate policy consistent with an optimal plan under
discretion. Finally, it is shown that the common argument in favor of active interest rate
policies, i.e. the absence of endogenous fluctuations, is not incompatible with a constant
interest rate.
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Tables

Table 1 Benchmark parameter values

σ η β φ � ρ σ2ε
1 1 0.99 0.75 6 0.9 1

Table 2 Unconditional variances and welfare for various parameter values

Peg (AR) Peg (MSV) Discretion Taylor

Welfare loss Welfare loss Welfare loss Welfare loss
Varπ Varx Varπ Varx Varπ Varx Varπ Varx

ρ = 0.75 -452.81 -4334.86 -279.91 -1276.50
2.36 75.86 34.47 310.25 1.38 49.64 12.41 12.41

ρ = 0.8 -464.98 -1767.35 -367.92 -1982.18
2.02 91.95 12.12 193.98 1.81 65.25 19.27 19.27

ρ = 0.85 -508.73 -1042.81 -517.89 -3400.34
1.66 119.85 5.43 174.52 2.55 91.84 33.06 33.06

ρ = 0.9 -629.45 -846.74 -823.56 -6872.52
1.24 176.64 2.55 206.74 4.06 146.05 66.81 66.81

ρ = 0.95 -1065.44 -1133.14 -1754.03 -19742.23
0.71 347.40 1.00 361.09 8.64 311.06 191.93 191.93

φ = 0.7∗ -392.31 -469.40 -476.43 -3967.05
0.59 75.92 1.03 83.52 1.85 66.51 38.00 38.00

σ = 2∗∗ -535.00 -892.69 -489.62 -4994.05
2.01 77.74 4.78 96.72 1.92 69.26 48.41 35.57

Notes: The parameters σ and φ equal 1 and 0.75, except for * and ** where ρ=0.9.
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A Appendix

A.1 Discretionary policy

Under discretion, the CB minimizes its loss function w.r.t. πt and xt, treating expecta-
tions as given: min

πt,xt
1/2Et

P∞
i=0 β

i
©
π2t+i + λx2t+i

ª
, subject to πt = βEtπt+1 + κxt + ut.

It is well established that the first order conditions for πt and xt under discretion lead
to the targeting rule πt = −λ

κxt (see Woodford (2003)). Using the generic solution
form πt = auut and xt = buut and plugging it into the Euler equation leads to Rt =

[buσ(ρ− 1) + ρau]ut. Further using ut =
πt
au
and that the target rule implies au

bu
= −λ

κ

yields Rt =
¡
κ
λσ(1− ρ) + ρ

¢
πt, which with κ

λ = � leads to Rt = [�σ(1− ρ) + ρ]πt which is
the policy used in section 2.1.

A.2 Unconditional moments

Given the state space form for πt in (4), the unconditional variance of πt, V arπt, can be
computed by

V arπt = a2πV arπt−1 + a2uV ar ut + 2aπauCov(ut,πt−1).

We use that the unconditional expectation of ut satisfies E(ut) = 0, so that Cov(ut,πt−1) =
E(utπt−1). We thus need to derive E(utπt−1). First iterate ut and πt−1 backwards to
obtain

ut= ρtu0 +
t−1X
s=0

ρsεt−s

πt−1= atππ−1 + at−1π auu0 +
t−2X
s=0

asπau

⎛⎝ρt−1−su0 +
t−2−sX
j=0

ρjεt−1−s−j

⎞⎠
Computing E(utπt−1) from these expressions and using E(εnεm) = 0 ∀ n 6= m yields

E(utπt−1) = ρtatπE(u0π−1) + ρtat−1π auE
¡
u20
¢
+ ρ2t−1au

1− (aπ/ρ)t−1

1− (aπ/ρ)
E
¡
u20
¢

(9)

+E
t−2X
s=0

asπau

t−2−sX
j=0

ε2t−1−s−jρ
s+1+2j
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We now simplify the term in the square brackets by applying the formula for finite geo-
metric sums. This yields

t−2X
s=0

asπau

t−2−sX
j=0

ε2t−1−s−jρ
s+1+2j =

⎛⎝auρ
t−2X
s=0

(aπρ)
s
t−2−sX
j=0

ρ2j

⎞⎠σ2ε

= σ2εauρ
t−2X
s=0

(aπρ)
s 1− ρ2(t−1−s)

1− ρ2
= σ2ε

auρ

1− ρ2

⎛⎜⎝1− (aπρ)t−1
1− aπρ

− ρ2t−2
1−

³
aπ
ρ

´t−1
1− aπ

ρ

⎞⎟⎠
where we used that the unconditional expectation E

¡
ε2t
¢
= V ar ε = σ2ε. Substituting out

the sums in (9) and using that stationarity of u and π implies E(u0π−1) = E(utπt−1), we
obtain

E(utπt−1) =
1

1− ρtatπ

⎧⎪⎨⎪⎩
⎡⎢⎣ρtat−1π au
1− ρ2

σ2ε +
ρ2t−1au
1− ρ2

1−
³
aπ
ρ

´t−1
1−

³
aπ
ρ

´ σ2ε

⎤⎥⎦
+

⎡⎢⎣σ2ε auρ

1− ρ2

⎛⎜⎝1− (aπρ)t−1
1− aπρ

− ρ2t−2
1−

³
aπ
ρ

´t−1
1− aπ

ρ

⎞⎟⎠
⎤⎥⎦
⎫⎪⎬⎪⎭

where we used E
¡
u20
¢
= V ar u = σ2ε

1−ρ2 . Cancelling identical terms and expanding the first
term by (1− aπρ) produces

E(utπt−1) =
auρ

1− ρtatπ

("
(ρaπ)

t−1 − (ρaπ)t

1− ρ2
1

1− aπρ
+

1

1− ρ2
1− (aπρ)t−1

1− aπρ

#
σ2ε

)
=

1

1− ρtatπ

auρ

(1− ρ2) (1− aπρ)

©£
1− ρtatπ

¤
σ2ε
ª

This expression can be simplified to yield

Cov(u, π) = au
ρ

(1− ρ2) (1− aπρ)
σ2ε, where Cov(u, π) = E(utπt−1). (10)

Using (10) and that stationarity of π implies V ar πt = V ar πt−1 = V ar π, we can compute
the unconditional variance of inflation as V ar π = 1

1−a2π

£
a2uV ar u+ 2aπauCov(u, π)

¤
.
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